Inventory Management Archives - Kai Waehner https://www.kai-waehner.de/blog/category/inventory-management/ Technology Evangelist - Big Data Analytics - Middleware - Apache Kafka Fri, 21 Mar 2025 07:18:29 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 https://www.kai-waehner.de/wp-content/uploads/2020/01/cropped-favicon-32x32.png Inventory Management Archives - Kai Waehner https://www.kai-waehner.de/blog/category/inventory-management/ 32 32 Retail Media with Data Streaming: The Future of Personalized Advertising in Commerce https://www.kai-waehner.de/blog/2025/03/21/retail-media-with-data-streaming-the-future-of-personalized-advertising-in-commerce/ Fri, 21 Mar 2025 07:18:29 +0000 https://www.kai-waehner.de/?p=7529 Retail media is reshaping digital advertising by using first-party data to deliver personalized, timely ads across online and in-store channels. As retailers build retail media networks, they unlock new revenue opportunities while improving ad effectiveness and customer engagement. The key to success lies in real-time data streaming, which enables instant targeting, automated bidding, and precise attribution. Technologies like Apache Kafka and Apache Flink make this possible, helping retailers like Albertsons enhance ad performance and maximize returns. This post explores how real-time streaming is driving the evolution of retail media

The post Retail Media with Data Streaming: The Future of Personalized Advertising in Commerce appeared first on Kai Waehner.

]]>
Retail media is transforming advertising by leveraging first-party data to deliver highly targeted, real-time promotions across digital and physical channels. As traditional ad models decline, retailers are monetizing their data through retail media networks, creating additional revenue streams and improving customer engagement. However, success depends on real-time data streaming—enabling instant ad personalization, dynamic bidding, and seamless attribution. Data Streaming with Apache Kafka and Apache Flink provide the foundation for this shift, allowing retailers like Albertsons to optimize advertising strategies and drive measurable results. In this post, I explore how real-time streaming is shaping the future of retail media.

Retail Media with Data Streaming using Apache Kafka and Flink

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And download my free book about data streaming use cases, including various use cases from the retail industry.

What is Retail Media?

Retail media is transforming how brands advertise by leveraging first-party data from retailers to create highly targeted ads within their ecosystems. Instead of relying solely on third-party data from traditional digital advertising platforms, retail media allows companies to reach consumers at the point of purchase—whether online, in-store, or via mobile apps.

Retail media is one of the fastest-growing and most strategic revenue streams for retailers today. It has transformed from a niche digital advertising concept into a multi-billion-dollar industry, changing how retailers monetize their data and engage with brands. Below are the key reasons retail media is crucial for retailers.

Online catalogue or Sales concept with three happy diverse shoppers carrying bags past a computer screen with Sale icons, vector illustration
Retail Media: Display with Advertisements in the Store

Retailers like Amazon, Walmart, and Albertsons are leading the way in monetizing their digital real estate, offering brands access to sponsored product placements, banner ads, video ads, and personalized promotions based on shopping behavior. This shift has made retail media one of the fastest-growing sectors in digital advertising, expected to exceed $100 billion globally in the coming years.

The Digitalization of Retail Media

Retail media has grown from traditional in-store promotions to a fully digitized, data-driven advertising ecosystem. The rise of e-commerce, mobile apps, and connected devices has enabled retailers to:

  • Collect granular consumer behavior data in real time
  • Offer personalized promotions to drive higher conversion rates
  • Provide advertisers with measurable ROI and closed-loop attribution
  • Leverage AI and machine learning for dynamic ad targeting

By integrating digital advertising with real-time customer data and real-time inventory, retailers can provide contextually relevant promotions across multiple touchpoints. The key to success lies in seamlessly connecting online and offline shopping experiences—a challenge that data streaming with Apache Kafka and Flink helps solve.

Online, Brick-and-Mortar, and Hybrid Retail Media

Retail media strategies vary depending on whether a retailer operates online, in-store, or in a hybrid model:

  • Online-Only Retail Media: Retail giants like Amazon and eBay leverage vast amounts of digital consumer data to offer programmatic ads, sponsored products, and personalized recommendations directly on their websites and apps.
  • Brick-and-Mortar Retail Media: Traditional retailers like Target and Albertsons are integrating digital signage, in-store Wi-Fi promotions, and AI-powered shelf displays to engage customers while shopping in physical stores.
  • Hybrid Retail Media: Retailers like Walmart and Kroger are bridging the gap between digital and physical shopping experiences with omnichannel marketing strategies, personalized mobile app promotions, and AI-powered customer insights that drive both online and in-store purchases.

Omnichannel vs. Unified Commerce in Retail Media

Retailers are moving beyond omnichannel marketing, where customer interactions happen across multiple channels, to unified commerce, where all customer data, inventory, and marketing campaigns are synchronized in real time.

  • Omnichannel: Offers a seamless shopping experience across different platforms but often lacks real-time data integration.
  • Unified Commerce: Uses real-time data streaming to unify customer behavior, inventory management, and personalized advertising for a more cohesive experience.

For example, a unified commerce strategy allows a retailer to:

This level of integration is only possible with real-time data streaming using technologies such as Apache Kafka and Apache Flink.

Retail media networks require real-time data processing at scale to manage millions of customer interactions across online and offline touchpoints. Kafka and Flink provide the foundation for a scalable, event-driven infrastructure that enables retailers to:

  • Process customer behavior in real time: Tracking clicks, searches, and in-store activity instantly
  • Deliver hyper-personalized ads and promotions: AI-driven dynamic ad targeting
  • Optimize inventory and pricing: Aligning promotions with real-time stock levels
  • Measure campaign performance instantly: Providing brands with real-time attribution and insights

Event-Driven Architecture with Data Streaming for Retail Media with Apache Kafka and Flink

With Apache Kafka as the backbone for data streaming and Apache Flink for real-time analytics, retailers can ingest, analyze, and act on consumer data within milliseconds.

Here are a few examples of input data sources, stream processing applications, and outputs for other systems:

Input Data Sources for Retail Media

  1. Customer transaction data (e.g., point-of-sale purchases, online orders)
  2. Website and app interactions (e.g., product views, searches, cart additions)
  3. Loyalty program data (e.g., customer preferences, purchase frequency)
  4. Third-party ad networks (e.g., campaign performance data, audience segments)
  5. In-store sensor and IoT data (e.g., foot traffic, digital shelf interactions)

Stream Processing Applications for Retail Media

  1. Real-time advertisement personalization engine (customizes promotions based on live behavior)
  2. Dynamic pricing optimization (adjusts ad bids and discounts in real-time)
  3. Customer segmentation & targeting (creates audience groups based on behavioral signals)
  4. Fraud detection & clickstream analysis (identifies bot traffic and fraudulent ad clicks)
  5. Omnichannel attribution modeling (correlates ads with online and offline purchases)

Output Systems for Retail Media

  1. Retail media network platforms (e.g., sponsored product listings, display ads)
  2. Programmatic ad exchanges (e.g., Google Ads, The Trade Desk, Amazon DSP)
  3. CRM & marketing automation tools (e.g., Salesforce, Adobe Experience Cloud)
  4. Business intelligence dashboards (e.g., Looker, Power BI, Tableau)
  5. In-store digital signage & kiosks (personalized promotions for physical shoppers)

Real-time data streaming with Kafka and Flink enables critical retail media use cases by processing vast amounts of data from customer interactions, inventory updates and advertising platforms. The ability to analyze and act on data instantly allows retailers to optimize ad placements, enhance personalization, and measure the effectiveness of marketing campaigns with unprecedented accuracy. Below are some of the most impactful retail media applications powered by event-driven architectures.

Personalized In-Store Promotions

Retailers can use real-time customer location data, combined with purchase history and preferences, to deliver highly personalized promotions through mobile apps or digital signage. By incorporating location-based services (LBS), the system detects when a shopper enters a specific section of a store and triggers a targeted discount or special offer. For example, a customer browsing the beverage aisle might receive a notification offering 10% off their favorite soda, increasing the likelihood of an impulse purchase.

Dynamic Ad Placement & Bidding

Kafka and Flink power real-time programmatic advertising, enabling retailers to dynamically adjust ad placements and bids based on customer activity and shopping trends. This allows advertisers to serve the most relevant ads at the optimal time, maximizing engagement and conversions. For instance, Walmart Connect continuously analyzes in-store and online behavior to adjust which ads appear on product pages or search results, ensuring brands reach the right shoppers at the right moment.

Inventory-Aware Ad Targeting

Real-time inventory tracking ensures that advertisers only bid on ads for products that are in stock and ready for fulfillment, reducing wasted ad spend and improving customer satisfaction. This integration between retail media networks and inventory systems prevents scenarios where customers click on an ad only to find the item unavailable. For example, if a popular TV model is running low in a specific store, the system can prioritize ads for a similar in-stock product, ensuring a seamless shopping experience.

Fraud Detection & Brand Safety

Retailers must protect their media platforms from click fraud, fake engagement, and suspicious transactions, which can distort performance metrics and drain marketing budgets.

Kafka and Flink enable real-time fraud detection by analyzing patterns in ad clicks, user behavior, and IP addresses to identify bots or fraudulent activity. For example, if an unusual spike in ad impressions originates from a single source, the system can immediately block the traffic, safeguarding advertisers’ investments.

Real-Time Attribution & Measurement

Retail media networks must provide advertisers with instant insights into ad performance by linking online interactions to in-store purchases.

Kafka enables event-driven attribution models, allowing brands to measure how digital ads drive real-world sales. For example, if a customer clicks on an ad for running shoes, visits a store, and buys them later, the platform tracks the conversion in real time, ensuring brands understand the full impact of their campaigns. Solutions like Segment (built on Kafka) provide robust customer data platforms (CDPs) that help retailers unify and analyze customer journeys.

Retail Media as an Advertising Channel for Third-Party Brands

Retailers are increasingly leveraging third-party data sources to bridge the gap between retail media networks and adjacent industries, such as quick-service restaurants (QSRs).

Kafka enables seamless data exchange between grocery stores, delivery apps, and restaurant chains, optimizing cross-industry advertising. For example, a burger chain could dynamically adjust digital menu promotions based on real-time data from a retail partner—if a grocery store’s sales data shows a surge in plant-based meat purchases, the restaurant could prioritize ads for its new vegan burger, ensuring more relevant and effective marketing.

Albertsons’ New Retail Media Strategy Leveraging Data Streaming

One of the most innovative retail media success stories comes from Albertsons. Albertsons is one of the largest supermarket chains in the United States, operating over 2,200 stores under various banners, including Safeway, Vons, and Jewel-Osco, and providing groceries, pharmacy services, and household essentials.

I explored Albertsons in another article about its revamped loyalty platform to retain customers for life. Data streaming is essential and a key strategic part of Albertsons’ enterprise architecture:

Albertsons Retail Enterprise Architecture for Data Streaming powered by Apache Kafka
Source: Albertsons (Confluent Webinar)

When I hosted a webinar with Albertsons around two years ago on their data streaming strategy, retail media was one of the bullet points. But I didn’t yet realize until now how crucial it would become for retailers:

  • Retail Media Network Expansion: Albertsons has launched its own retail media network, leveraging first-party data to create highly targeted advertising campaigns.
  • Real-Time Personalization: With real-time data streaming, Albertsons can provide personalized promotions based on customer purchase history, in-store behavior, and digital engagement.
  • AI-Powered Insights: Albertsons uses AI and machine learning on top of streaming data pipelines to optimize ad placements, campaign effectiveness, and dynamic pricing strategies.
  • Data Monetization: By offering data-driven advertising solutions, Albertsons is monetizing its shopper data while enhancing the customer experience with relevant, timely promotions.

Business Value of Real-Time Retail Media

Retailers that adopt data streaming with Kafka and Flink for retail media strategies to unlock massive business value:

  • New Revenue Streams: Retail media monetization drives ad sales growth
  • Higher Conversion Rates: Real-time targeting improves customer engagement
  • Better Customer Insights: Streaming analytics enables deep behavioral insights
  • Competitive Advantage: Retailers with real-time personalization outperform rivals
  • Better Customer Experience: Retail media reduces friction and enhances the shopping journey through personalized promotions

The Future of Retail Media is Real-Time and Context-Specific Data Streaming

Retail media is no longer just about placing ads on retailer websites—it’s about delivering real-time, data-driven advertising experiences across every consumer touchpoint.

With Kafka and Flink powering real-time data streaming, retailers can:

  • Unify online and offline shopping experiences
  • Enhance personalization with AI-driven insights
  • Maximize ad revenue with real-time campaign optimization

As retailers like Albertsons, Walmart, and Amazon continue to innovate, the future of retail media will be hyper-personalized, data-driven, and real-time.

How is your organization using real-time data for retail media? Stay ahead of the curve in retail innovation! Subscribe to my newsletter for insights into data streaming and connect with me on LinkedIn to continue the conversation. And download my free book about data streaming use cases and success stories in the retail industry.

The post Retail Media with Data Streaming: The Future of Personalized Advertising in Commerce appeared first on Kai Waehner.

]]>
Kafka for Live Commerce to Transform the Retail and Shopping Metaverse https://www.kai-waehner.de/blog/2021/12/17/kafka-live-commerce-transform-retail-shopping-metaverse/ Fri, 17 Dec 2021 06:46:24 +0000 https://www.kai-waehner.de/?p=3631 Live commerce combines instant purchasing of a featured product and audience participation. This blog post explores the need for real-time data streaming with Apache Kafka between applications to enable live commerce across online stores and brick & mortar stores across regions, countries, and continents in any retail business. The discussion covers several buildings blocks of a live commerce enterprise architecture, including transactional data processing, omnichannel, natural language processing, augmented reality, edge computing, and more.

The post Kafka for Live Commerce to Transform the Retail and Shopping Metaverse appeared first on Kai Waehner.

]]>
Live commerce combines instant purchasing of a featured product and audience participation. The covid pandemic accelerated this trend. Live commerce emerged in China but arrived in the west across industries, no matter if you sell fashion, toys, cars, digital features, or anything else. This blog post explores the need for real-time data streaming with Apache Kafka between applications to enable live commerce across online stores and brick & mortar stores across regions, countries, and continents.

The discussion covers several buildings blocks of a live commerce enterprise architecture. Retail topics include omnichannel retail, hyper-personalized customer communication, transactional data processing, and innovative entertainment with Augmented Reality. Other technical aspects cover the replayability of historical data and correlation with real-time events, AI and Machine Learning applied to real-time data, and edge analytics in the retail store.

Apache Kafka to Transform Retail and Shopping with the Live Commerce Metaverse

Live commerce transforms the retail experience

“The arrival of Alibaba’s Taobao Live in May 2016 marked the opening of a new chapter in sales. The Chinese retail giant had pioneered a powerful new approach: linking up an online live stream broadcast with an e-commerce store to allow viewers to watch and shop at the same time,” reports McKinsey in a great article about the shopping revolution. They explain: “Live commerce combines instant purchasing of a featured product and audience participation through a chat function or reaction buttons. In China, live commerce has transformed the retail industry and established itself as a major sales channel in less than five years.”

McKinsey shows the impressive growth of live commerce in China in the following diagram:

McKinsey Live Commerce Statistics 2020

In the meantime, live commerce arrived in the western world. The earliest adopters outside of China are the German beauty retailer Douglas, fashion retailer Tommy Hilfiger in Europe and the US, and the US retail giant Walmart. The global Covid pandemic was a huge driver, too.

Live commerce via social apps everywhere

Live commerce helps brands and retailers to create value and increase online revenue. Online marketplaces, live auctions, influencer streaming, and live events such as a product launch drive sales in various ways:

  • More web traffic and an increased audience
  • Increased conversion rates via interactive discussions combined with time-limited tactics such as one-off coupons
  • Context-specific upsell strategies in real-time to increase the average basket size
  • Improved brand appeal and differentiation by providing an innovative and entertaining shopping experience

AliExpress Live App

For example, AliExpress, an Alibaba subsidiary, launched a live commerce service called “AliExpress Live”, which saw as many as 320,000 goods being added to the cart per one million views during a single live streaming session. The growth numbers and conversation rates are insane compared to the traditional retail history. It is no surprise that many retailers, auction houses, and social platforms want to get a piece of this enormous cake.

Buy now, pay later (BNPL) as an accelerator for live commerce

Point-of-sale (POS) financing services in the United States have grown significantly over the past 24 months, especially since the onset of COVID-19. Trends fueling growth include digitization, rising merchant adoption, increasing repeat usage among younger consumers, and an expanding set of players targeting lending at point of sale, a service also known as “buy now, pay later.reports McKinsey.

We can see this trend across the globe. Companies like Klarna, Afterpay, and Paypal added BNPL to their primary products and apps. It is just one click away and often even set as the default payment option.

The following diagram shows the “Buy Now, Pay Later Adoption by Generation, 2019-2021” from Cornerstone Advisors:

Buy Now Pay Later BNPL Adoption by Generation 2019-2021

BNPL is an excellent combination with live commerce. People can buy cool stuff even though they cannot afford it. A scary trend for people, but a massive opportunity for retailers (moral point of view excluded).

Let’s now look at data streaming, and why this is so relevant for live commerce.

Real-time data streaming with Apache Kafka for live commerce

Real-time data beats slow data. That’s true for almost every business scenario:

Real-time Data beats Slow Data in Retail

Live commerce contains not just the active live sales activity but the whole end-to-end sales process, including payment, order fulfillment, shipping, and much more. Hence, don’t expect buying a live commerce COTS sales platform will solve all your challenges!

The live commerce retail experience is a stream of events

Live commerce requires a great customer experience end to end. Most actions and data correlations should or even have to happen in real-time. Data correlation requires connectivity to the social platforms, the live commerce sales platform, and many other backend processes and applications:

Live Commerce with Data in Motion

Several concepts play a role in live commerce to provide a good customer experience and increased conversion rate compared to traditional retail techniques:

  • Integration with backend systems such as real-time inventory, CRM, ERP, 3rd payment providers, loyalty platform, and so on to provide the correct contextual information to any consumer application
  • Real-time data correlation for intelligent communication and pricing
  • Omnichannel user interfaces for cross-device experiences
  • The replayability of historical events for context-specific next best actions and recommendations
  • Automation of (some) communication with chatbots and other natural language processing (NLP) for faster response times and cost reduction
  • Enhanced and entertaining customer experiences with groundbreaking technologies such as Augmented Reality (AR) and Virtual Reality (VR)
  • Edge analytics for location-based services and deeper integration into brick and mortar stores while the customer is attending live events.

Live commerce in motion with event streaming and Kafka

Live commerce requires the right action at the right time. Requirements include:

  • Interact with the customer during the show.
  • Recommend products that need to be sold.
  • Provide context-specific pricing.
  • All automated. In real-time. At scale.

Some businesses buy a live commerce platform. Others differentiate by building their own. Live commerce only works well if all the other applications are integrated in real-time. Hence, event streaming with Kafka plays a pivotal role in many next-generation retail architectures – no matter if you build your live commerce platform or buy (and integrate) a 3rd party product or cloud service.

Here is an example architecture for a decentralized, scalable, real-time live commerce infrastructure powered by Kafka and its ecosystem:

Live Commerce in Retail with Data in Motion powered by Apache Kafka

Building blocks for a live commerce architecture powered by Kafka

From an event streaming perspective, here are some potential building blocks for a live commerce architecture (you don’t need all, and there can be others, too):

  • Omnichannel retail
  • The replayability of historical data
  • AI and Machine Learning applied to real-time data
  • Hyper-personalized customer communication
  • Transactional and analytical data processing
  • Groundbreaking entertainment with augmented reality / virtual reality
  • Edge analytics in the retail store

Let’s explore each building block in more detail in the following subsections.

Omnichannel real-time customer experience with true decoupling

One of Kafka’s key strengths is the true decoupling between producers and consumers to allow omnichannel retail architectures. As Kafka stores events as long as you want (from minutes to years), a consumer can process the data at its own pace, either real-time, near real-time, batch, or with a request-response call:

Omnichannel Retail with Apache Kafka - Customer 360 Sales and Aftersales

Domain-driven Design (DDD) and truly decoupled microservices are much easier to build with Kafka than using traditional message queues or ETL/ESB tools. Kafka enables a truly decentralized Data Mesh architecture with any combination of technologies, products, and cloud services.

Replayability to reuse and correlate historical data with real-time events

The storage capability of Kafka is helpful for many use cases. From a technical perspective, the replayability of historical events allows scenarios like:

  • New consumer application
  • Error-handling
  • Compliance / regulatory processing
  • Query and analyze existing events
  • Schema changes in an analytics platform
  • Model training

Use Cases for Replay and Reprocessing Historical Events with Apache Kafka

From a business perspective, the replay of historical events helps to

  • improve the next live event by analyzing past events (including customer reactions, Q&A, order history, etc.),
  • estimate the demand for live events and correlate it to real-time inventory
  • enable data science teams to build new algorithms for marketing and sales strategies
  • many other use cases that a retail business expert might become after seeing this possibility of accessing historical information in guaranteed order with timestamps and correlated to customer IDs.
A long retention time and Tiered Storage for an initial bootstrap

The retention time in Kafka can be configured to be months, years, or even forever. The replay capability solves the challenge of building an initial bootstrap. Don’t underestimate this feature. Most proprietary streaming services (such as AWS Kinesis) and eventing interfaces from cloud services (such as Salesforce) only provide a few days of historical data. Limited retention time kills many replay use cases, as it does not offer the option to perform a one-time snapshot before starting the real-time CDC.

Tiered Storage for Kafka makes long-term storage in Kafka cost-efficient and scalable, been for Terabytes or Petabytes of data. “Can Apache Kafka replace a database, data lake, or lakehouse?” goes into more detail on this discussion.

Conversational AI for cost reduction with chatbots and speech translation

Natural Language Processing (NLP) helps many projects in the real world for service desk automation, customer conversation with a chatbot, content moderation in social networks, and many other use cases. Kafka is the scalable real-time orchestration layer, but often used for additional use cases, such as embedded an analytic model into a Kafka streaming microservice:

Conversational AI NLP and Chatbot with Apache Kafka

NLP within the streaming architecture enables massive cost reductions and shortens the response time in a live commerce infrastructure. NLP adds immense business value even if just 50% of the most fundamental questions in the chat and comments are answered automatically.

I wrote a detailed article that explores how Apache Kafka is used with Machine Learning platforms at the carmaker BMW, the online travel and booking portal Expedia, and the dating app Tinder for reliable real-time conversational AI, NLP, and chatbots.

Real-time sentiment analysis to improve live shows

Related to the above topic, NLP is also helpful to analyze the chat, comments, live surveys, and other feedback in real-time to act proactively during the live event.

Sentiment analysis uses NLP to systematically identify, extract, quantify, and study affective states and subjective information. You can make (manual or automated) real-time decisions on questions such as:

  • Do people like the product?
  • Should we present it differently?
  • Do the structure of the show and the camera view work?
  • Should we focus on other features of the product?
  • Is any immediate emergency action needed, like focusing on different parts or stopping the product presentation?

Sentiment analysis is a prevalent hello world example for AI and Machine Learning. If you search for Kafka-powered examples with any ML framework, most examples show you how to implement sentiment analysis on Twitter data. The adaption to your data set is pretty straightforward regarding the model training, even though the devil lies in the details, of course. Hence, the model training is only a fraction of the real-world challenges in an ML architecture.

Data integration at scale, ML infrastructure monitoring, and reliable model predictions in real-time, and similar challenges often use Kafka’s helpful characteristics to make the ML project successful.

Sony Playstation understands gamer’s sentiment in real-time

Sony Playstation is a great real-world example for sentiment analysis with Kafka. In a Kafka Summit talk, Sony talked about their journey from daily batch jobs to real-time data processing and analytics with Apache Kafka. This enables understanding of gamers’ sentiment by streaming data from social feeds and performing language processing in real-time.

I wrote a detailed article if you want to learn more about deploying anyMachine Learning models in Kafka applications.

Hyper-personalized context-specific customer experience

A hyper-personalized online retail experience turns each customer visit into a one-on-one marketing opportunity. This communication technique is crucial for online stores and can significantly change live commerce, too.

AO.com is an electrical retailer in the UK that implemented a hyper-personalized real-time experience. Event Streaming applications correlate historical customer data with real-time digital signals. This capability maximizes customer satisfaction and revenue growth and increases customer conversions.

Building a hyper-personalized experience requires real-time data integration and correlation at scale. The realization is a journey that takes some time. AO presented their maturity curve of the last few years:

Kafka Journey at AO

Similar to AO.com, imagine how you could improve your live commerce use cases with hyper-personalized real-time customer communication.

Let’s talk about one example: Embedding a Lead Scoring Model (LSM) into your real-time conversations with customers can speed up sales engagement and generate conversion. Speed to contact leads with the correct contextual information is critical in live commerce. Insights to lead score, e.g., signals, are essential as well. Recommendations, product discounts, up-and cross-selling go beyond simple business rules and are applied in real-time when it makes the most sense.

Transactional and analytical data processing in motion

Many people still think about Kafka as a system for big data workloads. That’s indeed what it was built for over a decade ago. However, in the meantime, over 50% of use cases I see at our customers are about processing transactions in real-time with the need for zero data loss. Transactional data includes integration with the point of sale (POS), payment processing, fraud detection, CRM and ERP communication, and much more in the retail industry.

eBay Korea – Multi-region Kafka for processing transactional data

Here is a brilliant case study for transactional workloads across multiple regions to ensure full disaster recovery and service stability without any data loss. eBay Korea (acquired by Shinsegae) uses Apache Kafka for live commerce and transactional event streaming:

eBay Korea uses Apache Kafka for Live Commerce and Transactional Event Streaming

More details about eBay Korea’s Kafka deployments are available in the case study.

Augmented Reality to build an entertaining live commerce metaverse

Augmented Reality (AR) and Virtual Reality (VR) get traction across industries beyond gaming – including retail, manufacturing, transportation, and healthcare. Event Streaming plays a key role as scalable real-time integration and orchestration layer for AR and VR applications:

Retail Use Case with Augmented reality and Apache Kafka

Today, most live commerce offerings “just” use standard mobile apps. However, AR and VR make the customer experience much more fun. It allows closer interaction with the salesperson (a beloved celebrity or influencer).

We built a demo that integrates an innovative AR mobile shopping experience with the backend systems via the event streaming platform Apache Kafka.

The beauty of an event-driven architecture combined with patterns like Data Mesh enables one to onboard new features or technologies step-by-step. There is no need for a big bang or integration of a monolithic proprietary product to provide such a solution.

Edge analytics in the retail store

Most retail companies have a cloud-first strategy to focus on business problems using an agile, elastic, serverless infrastructure.

However, low-latency use cases, cost-efficiency in a connected world, or lousy internet connectivity (i.e., stores in malls) require edge computing outside a data center or cloud. Hence, many retailers deploy application logic, including event streaming at the edge:

Event Streaming with Apache Kafka at the Edge in the Smart Retail Store

A Hybrid Streaming Architecture for Smart Retail Stores with Apache Kafka” explores this use case in more detail. A key benefit is that the same architecture, technologies, APIs, and software retailers use in the cloud can be deployed on small computers in the retail store to enable edge computing. Use cases include location-based services, up-selling and discounting, integration with on-site devices (point of sale, sales machines, fun devices, whatever).

I have written plenty of articles about this already, such as use cases for event streaming at the edge and an infrastructure checklist for Apache Kafka at the edge.

Live commerce requires real-time data streaming

The building blocks in this blog post covered various concepts used in a live commerce enterprise architecture. One thing is clear: You can buy a live commerce product or build your own. But the retail innovation only works if data is moved between different applications in real-time and used for data correlation at the right time and context.

Event streaming plays a crucial role in modern retail architectures. Therefore, it is no surprise that Apache Kafka can help to build your next-generation live commerce infrastructure. eBay Korea is a great success story for deploying transactional data flows across multiple regions for zero data loss, even with a disaster.

Do you already sell your products via live commerce? What technologies and architectures do you use? Are event streaming and Kafka part of the architecture? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

The post Kafka for Live Commerce to Transform the Retail and Shopping Metaverse appeared first on Kai Waehner.

]]>