Comparison Of Log Analytics for Distributed Microservices – Open Source Frameworks, SaaS and Enterprise Products

I had two sessions at O’Reilly Software Architecture Conference in London in October 2016. It is the first #OReillySACon in London. A very good organized conference with plenty of great speakers and sessions. I can really recommend this conference and its siblings in other cities such as San Francisco or New York if you want to learn about good software architectures and new concepts, best practices and technologies. Some of the hot topics this year besides microservices are DevOps, serverless architectures and big data analytics.

I want to share the slide of my session about comparing open source frameworks, SaaS and Enterprise products regarding log analytics for distributed microservices:

Monitoring Distributed Microservices with Log Analytics

IT systems and applications generate more and more distributed machine data due to millions of mobile devices, Internet of Things, social network users, and other new emerging technologies. However, organizations experience challenges when monitoring and managing their IT systems and technology infrastructure. They struggle with distributed Microservices and Cloud architectures, custom application monitoring and debugging, network and server monitoring / troubleshooting, security analysis, compliance standards, and others.

This session discusses how to solve the challenges of monitoring and analyzing Terabytes and more of different distributed machine data to leverage the “digital business”. The main part of the session compares different open source frameworks and SaaS cloud solutions for Log Management and operational intelligence, such as Graylog , the “ELK stack”, Papertrail, Splunk or TIBCO LogLogic). A live demo will demonstrate how to monitor and analyze distributed Microservices and sensor data from the “Internet of Things”.

The session also explains the distinction of the discussed solutions to other big data components such as Apache Hadoop, Data Warehouse or Machine Learning and its application to real time processing, and how they can complement each other in a big data architecture.

The session concludes with an outlook to the new, advanced concept of IT Operations Analytics (ITOA).

Slide Deck from O’Reilly Software Architecture Conference

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

How Penske Logistics Transforms Fleet Intelligence with Data Streaming and AI

Real-time visibility has become essential in logistics. As supply chains grow more complex, providers must…

1 day ago

Data Streaming Meets the SAP Ecosystem and Databricks – Insights from SAP Sapphire Madrid

SAP Sapphire 2025 in Madrid brought together global SAP users, partners, and technology leaders to…

6 days ago

Agentic AI with the Agent2Agent Protocol (A2A) and MCP using Apache Kafka as Event Broker

Agentic AI is emerging as a powerful pattern for building autonomous, intelligent, and collaborative systems.…

1 week ago

Powering Fantasy Sports at Scale: How Dream11 Uses Apache Kafka for Real-Time Gaming

Fantasy sports has evolved into a data-driven, real-time digital industry with high stakes and massive…

2 weeks ago

Databricks and Confluent Leading Data and AI Architectures – What About Snowflake, BigQuery, and Friends?

Confluent, Databricks, and Snowflake are trusted by thousands of enterprises to power critical workloads—each with…

3 weeks ago

Databricks and Confluent in the World of Enterprise Software (with SAP as Example)

Enterprise data lives in complex ecosystems—SAP, Oracle, Salesforce, ServiceNow, IBM Mainframes, and more. This article…

3 weeks ago