5G Archives - Kai Waehner https://www.kai-waehner.de/blog/category/5g/ Technology Evangelist - Big Data Analytics - Middleware - Apache Kafka Wed, 30 Apr 2025 07:04:07 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 https://www.kai-waehner.de/wp-content/uploads/2020/01/cropped-favicon-32x32.png 5G Archives - Kai Waehner https://www.kai-waehner.de/blog/category/5g/ 32 32 Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming https://www.kai-waehner.de/blog/2025/04/30/real-time-data-sharing-in-the-telco-industry-for-mvno-growth-and-beyond-with-data-streaming/ Wed, 30 Apr 2025 07:04:07 +0000 https://www.kai-waehner.de/?p=7786 The telecommunications industry is transforming rapidly as Telcos expand partnerships with MVNOs, IoT platforms, and enterprise customers. Traditional batch-driven architectures can no longer meet the demands for real-time, secure, and flexible data access. This blog explores how real-time data streaming technologies like Apache Kafka and Flink, combined with hybrid cloud architectures, enable Telcos to build trusted, scalable data ecosystems. It covers the key components of a modern data sharing platform, critical use cases across the Telco value chain, and how policy-driven governance and tailored data products drive new business opportunities, operational excellence, and regulatory compliance. Mastering real-time data sharing positions Telcos to turn raw events into strategic advantage faster and more securely than ever before.

The post Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming appeared first on Kai Waehner.

]]>
The telecommunications industry is entering a new era. Partnerships with MVNOs, IoT platforms, and enterprise customers demand flexible, secure, and real-time access to network and customer data. Traditional batch-driven architectures are no longer sufficient. Instead, real-time data streaming combined with policy-driven data sharing provides a powerful foundation for building scalable data products for internal and external consumers. A modern Telco must manage data collection, processing, governance, data sharing, and distribution with the same rigor as its core network services. Leading Telcos now operate centralized real-time data streaming platforms to integrate and share network events, subscriber information, billing records, and telemetry from thousands of data sources across the edge and core networks.

Data Sharing for MVNO Growth and Beyond with Data Streaming in the Telco Industry

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And download my free book about data streaming use cases, including a dedicated chapter about the telco industry.

Data Streaming in the Telco Industry

Telecommunications networks generate vast amounts of data every second. Every call, message, internet session, device interaction, and network event produces valuable information. Historically, much of this data was processed in batches — often hours or even days after it was collected. This delayed model no longer meets the needs of modern Telcos, partners, and customers.

Data streaming transforms how Telcos handle information. Instead of storing and processing data later, it is ingested, processed, and acted upon in real time as it is generated. This enables continuous intelligence across all parts of the network and business.

Learn more about “The Top 20 Problems with Batch Processing (and How to Fix Them with Data Streaming)“.

Business Value of Data Streaming in the Telecom Sector

Key benefits of data streaming for Telcos include:

  • Real-Time Visibility: Immediate insight into network health, customer behavior, fraud attempts, and service performance.
  • Operational Efficiency: Faster detection and resolution of issues reduces downtime, improves customer satisfaction, and lowers operating costs.
  • New Revenue Opportunities: Real-time data enables new services such as dynamic pricing, personalized offers, and proactive customer support.
  • Enhanced Security and Compliance: Immediate anomaly detection and instant auditability support regulatory requirements and protect against cyber threats.

Technologies like Apache Kafka and Apache Flink are now core components of Telco IT architectures. They allow Telcos to integrate massive, distributed data flows from radio access networks (RAN), 5G core systems, IoT ecosystems, billing and support platforms, and customer devices.

Modern Telcos use data streaming to not only improve internal operations but also to deliver trusted, secure, and differentiated services to external partners such as MVNOs, IoT platforms, and enterprise customers.

Learn More about Data Streaming in Telco

Learn more about data streaming in the telecommunications sector:

Data streaming is not an allrounder to solve every problem. Hence, a modern enterprise architecture combines data streaming with purpose-built telco-specific platforms and SaaS solutions, and data lakes/warehouses/lakehouses like Snowflake or Databricks for the analytical workloads.

I already wrote about the combination of data streaming platforms like Confluent together with Snowflake and Microsoft Fabric. A blog series about data streaming with Confluent combined with AI and analytics using Databricks is coming right after this blog post here.

Building a Real-Time Data Sharing Platform in the Telco Industry with Data Streaming

By mastering real-time data streaming, Telcos unlock the ability to share valuable insights securely and efficiently with internal divisions, IoT platforms, and enterprise customers.

Mobile Virtual Network Operators (MVNOs) — companies that offer mobile services without owning their own network infrastructure — are an equally important group of consumers. As an MVNO delivers niche services, competitive pricing, and tailored customer experiences, real-time data sharing becomes essential to support their growth and enable differentiation in a highly competitive market.

Real-Time Data Sharing Between Organizations Is Necessary in the Telco Industry

A strong real-time data sharing platform in the telco industry integrates multiple types of components and stakeholders, organized into four critical areas:

Data Sources

A real-time data platform aggregates information from a wide range of technical systems across the Telco infrastructure.

  • Radio Access Network (RAN) Metrics: Capture real-time information about signal quality, handovers, and user session performance.
  • 5G Core Network Functions: Manage traffic flows, session lifecycles, and device mobility through UPF, SMF, and AMF components.
  • Operational Support Systems (OSS) and Business Support Systems (BSS): Provide data for service assurance, provisioning, customer management, and billing processes.
  • IoT Devices: Send continuous telemetry data from connected vehicles, industrial assets, healthcare monitors, and consumer electronics.
  • Customer Premises Equipment (CPE): Supply performance and operational data from routers, gateways, modems, and set-top boxes.
  • Billing Events: Stream usage records, real-time charging information, and transaction logs to support accurate billing.
  • Customer Profiles: Update subscription plans, user preferences, device types, and behavioral attributes dynamically.
  • Security Logs: Capture authentication events, threat detections, network access attempts, and audit trail information.

Stream Processing

Stream processing technologies ensure raw events are turned into enriched, actionable data products as they move through the system.

  • Real-Time Data Ingestion: Continuously collect and process events from all sources with low latency and high reliability.
  • Data Aggregation and Enrichment: Transform raw network, billing, and device data into structured, valuable datasets.
  • Actionable Data Products: Create enriched, ready-to-consume information for operational and business use cases across the ecosystem.

Data Governance

Effective governance frameworks guarantee that data sharing is secure, compliant, and aligned with commercial agreements.

  • Policy-Based Access Control: Enforce business, regulatory, and contractual rules on how data is shared internally and externally.
  • Data Protection Techniques: Apply masking, anonymization, and encryption to secure sensitive information at every stage.
  • Compliance Assurance: Meet regulatory requirements like GDPR, CCPA, and telecom-specific standards through real-time monitoring and enforcement.

Data Consumers

Multiple internal and external stakeholders rely on tailored, policy-controlled access to real-time data streams to achieve business outcomes.

  • MVNO Partners: Consume real-time network metrics, subscriber insights, and fraud alerts to offer better customer experiences and safeguard operations.
  • Internal Telco Divisions: Use operational data to improve network uptime, optimize marketing initiatives, and detect revenue leakage early.
  • IoT Platform Services: Rely on device telemetry and mobility data to improve fleet management, predictive maintenance, and automated operations.
  • Enterprise Customers: Integrate real-time network insights and SLA compliance monitoring into private network and corporate IT systems.
  • Regulatory and Compliance Bodies: Access live audit streams, security incident data, and privacy-preserving compliance reports as required by law.

Key Data Products Driving Value for Data Sharing in the Telco Industry

In modern Telco architectures, data products act as the building blocks for a data mesh approach, enabling decentralized ownership, scalable integration with microservices, and direct access for consumers across the business and partner ecosystem.

Data Sharing in Telco with a Data Mesh and Data Products using Data Streaming with Apache Kafka

The right data products accelerate time-to-insight and enable additional revenue streams. Leading Telcos typically offer:

  • Network Quality Metrics: Monitoring service degradation, latency spikes, and coverage gaps continuously.
  • Customer Behavior Analytics: Tracking app usage, mobility patterns, device types, and engagement trends.
  • Fraud and Anomaly Detection Feeds: Capturing unusual usage, SIM swaps, or suspicious roaming activities in real time.
  • Billing and Charging Data Streams: Delivering session records and consumption details instantly to billing systems or MVNO partners.
  • Device Telemetry and Health Data: Providing operational status and error signals from smartphones, CPE, and IoT devices.
  • Subscriber Profile Updates: Streaming changes in service plans, device upgrades, or user preferences.
  • Location-Aware Services Data: Powering geofencing, smart city applications, and targeted marketing efforts.
  • Churn Prediction Models: Scoring customer retention risks based on usage behavior and network experience.
  • Network Capacity and Traffic Forecasts: Helping optimize resource allocation and investment planning.
  • Policy Compliance Monitoring: Ensuring real-time validation of internal and external SLAs, privacy agreements, and regulatory requirements.

These data products can be offered via APIs, secure topics, or integrated into partner platforms for direct consumption.

How Each Data Consumer Gains Strategic Value

Real-time data streaming empowers each data consumer within the Telco ecosystem to achieve specific business outcomes, drive operational excellence, and unlock new growth opportunities based on continuous, trusted insights.

Internal Telco Divisions

Real-time insights into network behavior allow proactive incident management and customer support. Marketing teams optimize campaigns based on live subscriber data, while finance teams minimize revenue leakage by tracking billing and usage patterns instantly.

MVNO Partners

Access to live network quality indicators helps MVNOs improve customer satisfaction and loyalty. Real-time fraud monitoring protects against financial losses. Tailored subscriber insights enable MVNOs to offer personalized plans and upsells based on actual usage.

IoT Platform Services

Large-scale telemetry streaming enables better device management, predictive maintenance, and operational automation. Real-time geolocation data improves logistics, fleet management, and smart infrastructure performance. Event-driven alerts help detect and resolve device malfunctions rapidly.

Enterprise Customers

Private 5G networks and managed services depend on live analytics to meet SLA obligations. Enterprises integrate real-time network telemetry into their own systems for smarter decision-making. Data-driven optimizations ensure higher uptime, better resource utilization, and enhanced customer experiences.

Building a Trusted Data Ecosystem for Telcos with Real-Time Streaming and Hybrid Cloud

Real-time data sharing is no longer a luxury for Telcos — it is a competitive necessity. A successful platform must balance openness with control, ensuring that every data exchange respects privacy, governance, and commercial boundaries.

Hybrid cloud architectures play a critical role in this evolution. They enable Telcos to process, govern, and share real-time data across on-premises infrastructure, edge environments, and public clouds seamlessly. By combining the flexibility of cloud-native services with the security and performance of on-premises systems, hybrid cloud ensures that data remains accessible, scalable, cost-efficient and compliant wherever it is needed.

Hybrid 5G Telco Architecture with Data Streaming with AWS Cloud and Confluent Edge and Cloud

By deploying scalable data streaming solutions across a hybrid cloud environment, Telcos enable secure, real-time data sharing with MVNOs, IoT platforms, enterprise customers, and internal business units. This empowers critical use cases such as dynamic quality of service monitoring, real-time fraud detection, customer behavior analytics, predictive maintenance for connected devices, and SLA compliance reporting — all without compromising performance or regulatory requirements.

The future of telecommunications belongs to those who implement real-time data streaming and controlled data sharing — turning raw events into strategic advantage faster, more securely, and more effectively than ever before.

How do you share data in your organization? Do you already leverage data streaming or still operate in batch mode? Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And make sure to download my free book about data streaming use cases.

The post Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming appeared first on Kai Waehner.

]]>
Data Streaming with Apache Kafka and Flink in the Media Industry: Disney+ Hotstar and JioCinema https://www.kai-waehner.de/blog/2025/02/28/data-streaming-with-apache-kafka-and-flink-in-the-media-industry-disney-hotstar-and-jiocinema/ Fri, 28 Feb 2025 05:27:28 +0000 https://www.kai-waehner.de/?p=7315 The $8.5 billion merger of Disney+ Hotstar and Reliance’s JioCinema marks a transformative moment for India’s media industry, combining two of the most influential streaming platforms into a data streaming powerhouse. This blog explores how technologies like Apache Kafka and Flink power these platforms, enabling massive-scale content distribution, real-time analytics, and user engagement. With tools like MirrorMaker and Cluster Linking, the merger presents opportunities for seamless Kafka migrations, hybrid multi-cloud flexibility, and new innovations like multi-angle viewing and advanced personalization. The transparency of both platforms about their Kafka-based architectures highlights their technical leadership and the lessons they offer the data streaming community. The integration of their infrastructures sets the stage for redefining media streaming in India, offering exciting insights and benchmarks for organizations leveraging data streaming at scale.

The post Data Streaming with Apache Kafka and Flink in the Media Industry: Disney+ Hotstar and JioCinema appeared first on Kai Waehner.

]]>
The media industry in India has witnessed a seismic shift with the $8.5 billion merger of Disney+ Hotstar and Reliance’s JioCinema. This collaboration brings together two of the country’s most influential data streaming deployments under one umbrella, creating a powerhouse for entertainment delivery. Beyond the headlines, this merger underscores the critical role of data streaming technologies, particularly Apache Kafka and Flink, in enabling large-scale content distribution and real-time data processing. This blog post explores the existing data streaming infrastructures and use cases. Additional, potential migrations leveraging Kafka tools for real-time data replication and synchronization without downtime of the production environments are explored.

Data Streaming with Apache Kafka and Flink in the Media Industry at Netflix Disney Plus Hotstar and Reliance JioCinema

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And make sure to download my free book about data streaming use cases.

Data streaming technologies like Apache Kafka and Flink are revolutionizing the media industry by enabling real-time data processing at an unprecedented scale. Media platforms, including Over-The-Top (OTT) services operated by telcos and media companies, leverage these technologies to deliver video, audio, and other content directly to viewers over the internet. The OTT services bypass traditional cable or satellite channels.

As these platforms cater to growing audiences with diverse needs, data streaming serves as the backbone for seamless content delivery, real-time user engagement, and operational efficiency. Data streaming ensures a superior viewing experience at scale.

Event-driven Architecture with Data Streaming using Apache Kafka and Flink in the Media Industry

Netflix is a leading global media company renowned for its extensive use of Apache Kafka and Flink. The media company powers critical use cases such as real-time personalization, anomaly detection, and monitoring at extreme scale. Its data streaming architecture processes billions of events daily, ensuring seamless content delivery and exceptional viewer experiences for a global audience.

Use Cases for Data Streaming in the Media Industry

Data streaming with technologies like Apache Kafka and Flink is transforming the media industry by enabling real-time data processing for seamless content delivery, personalized experiences, and operational efficiency.

  1. Live Video Streaming: Data streaming with Apache Kafka serves as a central event hub for managing log data, metadata, and control signals associated with live video streaming. It processes real-time data related to user interactions, stream health, and session analytics to ensure ultra-low latency and a seamless experience for live events like concerts and sports. The actual video streams are handled by Content Delivery Networks (CDNs).
  2. On-Demand Content Delivery: Media platforms use Kafka to reliably manage data pipelines, delivering movies, TV shows, and other content to millions of users.
  3. Personalized Recommendations: By integrating Kafka with analytics tools, platforms provide tailored suggestions based on user behavior, increasing viewer engagement and satisfaction.
  4. Real-Time Ad Targeting: Kafka enables real-time ad insertion by processing user events and contextual data, ensuring ads are relevant and timely.
  5. Monitoring and Anomaly Detection: Media companies use Kafka to monitor backend systems in real time, detecting and resolving issues proactively to ensure a smooth user experience.
  6. Churn Prediction: By analyzing behavioral patterns in real time, platforms can predict user churn and take corrective actions, such as offering discounts or new content recommendations.

Learn more about data streaming use cases in the telco and media industry from real world customer stories like Dish Network, British Telecom, Globe Telecom, Swisscom, and more:

Business Value of Data Streaming in Media

Data streaming technologies like Apache Kafka and Flink drive transformative business value in the media industry by enabling real-time insights, efficiency, and innovation:

  • Enhanced User Experience: Real-time at any scale capabilities enable faster content delivery, personalized recommendations, and reduced buffering.
  • Cost Optimization: Streamlined pipelines improve infrastructure utilization and reduce operational costs. The Shift Left Architecture is adopted across business units.
  • Revenue Growth: Precision in ad targeting and churn reduction leads to higher revenues.
  • Competitive Edge: Real-time analytics and content delivery position companies as leaders in their field.

Disney+ Hotstar (Disney) and JioCinema (Viacom18): Streaming Giants Shaping India’s Media Landscape

Disney+ Hotstar revolutionized OTT streaming in India with a robust freemium model. Catering to a diverse audience, it provided an extensive library of movies, TV shows, and sports, including exclusive streaming rights for the Indian Premier League (IPL), the world’s most popular cricket league. By blending free content with premium subscriptions, it attracted millions of users, leveraging IPL viewership as a major growth driver.

JioCinema, part of Reliance Jio, employs a mass-market approach, offering free streaming supported by Reliance’s vast 5G network. It gained significant traction by taking over the IPL digital streaming rights in 2023 in 4K resolution to over 32 million concurrent viewers, breaking records for live streaming.

Each platform used respectively uses IPL strategically—Hotstar with a premium model and JioCinema for mass-market penetration. Post-merger, the unified platform could combine these approaches, delivering enhanced IPL experiences powered by a consolidated Kafka-based streaming infrastructure.

Both platforms share a commitment to innovation, scalability, and user engagement, making them ideal candidates for heavy Apache Kafka usage.

Both Disney+ Hotstar and JioCinema (Viacom18) are renowned for their openness in discussing their technical data streaming architectures, similar to Netflix. They frequently presented at conferences like Kafka Summit and industry events, sharing insights about their data streaming strategies and implementations.

This transparency achieves several goals:

  • Showcasing Innovation: Highlighting their advanced use of Kafka and Flink establishes their leadership in tech innovation.
  • Talent Acquisition: Open discussions attract engineers who want to work on cutting-edge systems.
  • Industry Collaboration: Sharing experiences fosters collaboration within the streaming and open-source communities.

By examining their presentations and publications, we gain a deeper understanding of their use of Kafka to achieve extreme scalability and efficiency.

Data Streaming Solves the Challenges and Extreme Scale of OTT Services in the Media Industry

Running platforms of this scale comes with its share of challenges:

  • Massive Throughput: Kafka handles billions of messages daily, requiring extensive partitioning and scaling strategies.
  • Fault Tolerance: Platforms implement advanced disaster recovery and replication strategies to ensure zero downtime, even during critical events like IPL.
  • Cost vs. Performance Trade-Offs: Streaming 4K video for millions of users demands balancing high infrastructure costs with user expectations.

Data streaming with Apache Kafka and Flink is a key piece of the data strategy to solve these challenges.

Disney+ Hotstar: Gamification at Extreme Scale

Disney+ Hotstar’s “Watch N Play” feature transformed live sports streaming, particularly cricket, into an interactive experience. Viewers predict outcomes, answer trivia, and participate in polls, earning points for rewards or leaderboard rankings, adding a competitive and social element to the platform.

Hotstar’s presentation from Kafka Summit 2019 is still very impressive and worth watching. Here is a summary about the OTT services serving millions of cricket fans:

Disney Plus Hotstar OTT Media Service for Cricket with Apache Kafka
Source: Disney+ Hotstar

Powered by Apache Kafka, Disney+ Hotstar’s infrastructure processed millions of real-time interactions per second. The integration of data sources via Kafka Connect enables seamless analytics and rewards. This gamified approach enhances user engagement and extends to broader applications like e-sports, interactive TV, and IoT-driven fan experiences, making Hotstar a leader in innovative streaming.

Disney+ Hotstar runs ~15 different Kafka Connect clusters with over 2000+ connectors and auto-scaling based on traffic, as they presented in another Kafka Summit talk in 2021.

Disney Plus Hotstar Kafka Connect Integration Pipeline from Roku Apple Fire TV to Analytics
Source: Disney+ Hotstar

Single Message Transforms (SMT) are used within the Kafka Connect integration for stateless streaming ETL. Integration use cases include masking/filtering of PlI, sampling of data, and schema validation and enforcement.

JioCinema: Multiple Kafka Clusters and Deployment Strategies

JioCinema leverages a robust enterprise architecture built on Apache Kafka, Flink, and Spark. As showcased at Kafka Summit India 2024, data streaming is central to its platform, enabling real-time analytics, personalized recommendations, and seamless content delivery.

JioCinema Telco Cloud Enterprise Architecture with Apache Kafka Spark Flink
Source: JioCinema

Initially, JioCinema operated a single Kafka cluster handling 1,000+ topics and 100,000+ partitions for diverse use cases.

Over time, the platform transitioned to multiple Kafka clusters with different SLAs and architectures, optimizing uptime, performance, and costs for specific workloads, as explained by Kushal Khandelwal, Head of Data Platform.

Jio Cinema - Viacom18 - One Kafka Cluster does NOT fit All Use Cases Uptime SLAs and Cost
Source: JioCinema

This shift from a monolithic to a segmented architecture highlights the scalability and flexibility of Kafka. This approach ensures JioCinema meets the demands of high traffic and complex SLAs. Their success reflects the common journey of organizations scaling data streaming infrastructures to achieve operational excellence.

Use Cases for Kafka in Disney+ Hotstar and JioCinema

Disney+ Hotstar and JioCinema rely on Apache Kafka to power diverse use cases, from IPL cricket streaming to real-time personalization and ad targeting.

IPL Cricket Streaming at Massive Scale

The Indian Premier League (IPL) is the crown jewel of streaming in India, drawing millions of concurrent viewers. Here’s how Kafka and Flink support IPL’s massive scale:

  • Concurrent Viewers: During IPL 2023, JioCinema hit a record of over 32 million concurrent viewers, streaming matches in 4K resolution. Disney+ Hotstar has also scaled to tens of millions of viewers in past IPL seasons.
  • Data Throughput: JioCinema and Hotstar handle millions of messages per second with Kafka, ensuring uninterrupted video delivery.
  • Kafka Infrastructure: Reports reveal that JioCinema operates over 100 Kafka clusters, managing tens of thousands of partitions. These clusters handle not only video streaming but also ancillary tasks, like ad placement and user analytics.
  • Connectors: Both platforms rely on hundreds of Kafka Connect connectors to integrate with databases, storage systems, and real-time analytics platforms.

On-Demand Streaming and Catalog Management

Both platforms use Kafka to deliver on-demand content to millions of users, ensuring quick access to movies and TV shows. Kafka’s reliable event streaming guarantees smooth playback and dynamic scaling during peak usage.

Real-Time Personalization and Recommendations

Personalization is central to user retention. Kafka streams user behavior data to machine learning systems in real time, enabling both platforms to recommend content tailored to individual preferences. Customer loyalty and Rewards platform often leverage Kafka and Flink under the hood.

Ad Targeting and Revenue Optimization

By processing user data in real time, Kafka enables precise ad targeting with context-specific advertisements. This not only improves ad effectiveness but also enhances viewer experience by ensuring ads are contextually relevant. Many real-time advertising platforms are powered by a data streaming platform using Apache Kafka and Flink.

Content Quality Monitoring

Both platforms use Kafka for continuous real-time monitoring of video stream quality, automatically adjusting bitrate or rerouting streams during disruptions to maintain a consistent viewing experience.

Data Streaming for M&A, Merger and Migrations

The merger of Disney+ Hotstar and JioCinema presents a significant opportunity to integrate their Kafka-based infrastructures, paving the way for a unified, more efficient system. Such transitions are a natural fit for Apache Kafka and its ecosystem. Migrations are a core capability. Tools like MirrorMaker and Cluster Linking allow seamless data movement between clusters for continuous replication and a later lift and shift. The usage of data streaming for migration projects enables zero-downtime and business continuity.

Here are some opportunities and benefits of data streaming for integrations and migrations:

  1. Integrated Pipelines: A combined Kafka architecture could streamline content delivery, reduce costs, and support advanced analytics, providing an optimized infrastructure for their vast user base.
  2. Expanded Use Cases: The merger might drive innovations such as multi-angle viewing, live interactive features, and more personalized experiences powered by real-time data.
  3. Hybrid and Multi-Cloud Flexibility: Transitions like these often span hybrid and multi-cloud environments, making Kafka’s flexibility essential for connecting and scaling across platforms.
  4. Multi-Organization Integration: Merging Kafka clusters across distinct organizations, as in this case, is a common use case where Kafka’s tools excel.
  5. Technical Leadership: Both platforms are transparent about their Kafka implementations, and we can anticipate new insights from their efforts to integrate and scale, highlighting lessons for the broader streaming industry.

In conclusion, Kafka and Flink are not just enablers but drivers of success for Disney+ Hotstar and JioCinema. Data streaming at scale creates new benchmarks for innovation and user experience in the media industry.

Do you see similar opportunities in your organization? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter. And make sure to download my free book about data streaming use cases.

The post Data Streaming with Apache Kafka and Flink in the Media Industry: Disney+ Hotstar and JioCinema appeared first on Kai Waehner.

]]>
How Apache Kafka helps Dish Wireless building cloud-native 5G Telco Infrastructure https://www.kai-waehner.de/blog/2023/10/27/how-data-streaming-with-apache-kafka-helps-dish-wireless-building-cloud-native-5g-telco-infrastructure/ Fri, 27 Oct 2023 06:49:04 +0000 https://www.kai-waehner.de/?p=5661 5G telco infrastructure provides the basic foundations of data movement and increasingly unlocks new capabilities for low latency and critical SLAs. Real-time data processing with data streaming using Apache Kafka enables innovation across industries. This blog post explores the success story of Dish Wireless and its cloud-native standalone 5G infrastructure leveraging data streaming.

The post How Apache Kafka helps Dish Wireless building cloud-native 5G Telco Infrastructure appeared first on Kai Waehner.

]]>
5G telco infrastructure provides the basic foundations of data movement and increasingly unlocks new capabilities for low latency and critical SLAs. Real-time data processing with data streaming using Apache Kafka enables innovation across industries. This blog post explores the success story of Dish Wireless and its cloud-native standalone 5G infrastructure leveraging data streaming. The service provider enables enterprises to think in a new, innovative way about telco networks to build the next generation of applications for more efficient supply chains and better customer experiences.

Dish Wireless Cloud-native 5G Telco Network powered by Data Streaming with Apache Kafka

What is a 5G telco network?

5G, short for “fifth generation,” is the latest generation of wireless communication technology for mobile devices and networks. It represents a significant advancement over its predecessor, 4G LTE (fourth generation).

Technical benefits of 5G

Here are some key features and characteristics of 5G:

  1. Faster speeds: 5G offers significantly faster data transfer speeds than 4G. It delivers download speeds of up to several gigabits per second, allowing for nearly instantaneous downloads of large files, high-definition video streaming, and low-latency online gaming.
  2. Low latency: One of the most notable improvements in 5G is its low latency, which refers to the delay between sending and receiving data. This low latency is crucial for applications like autonomous vehicles, remote surgery, and real-time augmented and virtual reality experiences.
  3. Increased capacity: 5G networks can support a much larger number of devices simultaneously within the same geographic area. This is essential for the growing number of connected devices in the Internet of Things (IoT) ecosystem.
  4. Enhanced connectivity: 5G networks use a variety of frequency bands, including higher-frequency millimeter-wave (mmWave) bands and mid-band frequencies. These higher frequencies enable faster speeds but require more infrastructure, including small cells and antennas placed closer together.
  5. Improved network slicing: 5G allows for network slicing, which means network operators can allocate specific portions of the network to meet the needs of different applications and services. This enhances the flexibility and efficiency of the network.
  6. Security: Cellular has advantages in authentication, ruggedization, and built-in systematic threat detection/mitigation versus other commonly used networks (Wi-Fi, LPWAN, etc.). 5G was completely redesigned vs. 4G to adopt a zero-trust paradigm, including within the network and additional features that protect user identity. In contrast to a monolithic “trusted telco” network, 5G more closely aligns with the best practices of the most sophisticated enterprise networks.

Business opportunities of 5G

5G enables a massive potential for New Applications across all industries. 5G technology opens the door to various innovative applications and services. It can revolutionize entire industries, like healthcare, transportation, and entertainment.

Here are a few concrete examples:

  • Intelligent infrastructure: Deploying 5G infrastructure to enable smart city applications, such as traffic management, environmental monitoring, and public safety.
  • Connected and autonomous vehicles (CAVs): Building and providing connectivity solutions for autonomous cars, drones, and other autonomous vehicles that rely on low-latency 5G networks.
  • Factory automation: Implementing 5G for real-time monitoring and control industrial processes in smart factories.
  • Supply chain optimization: Using 5G for visibility, tracking, and management.
  • Enhanced retail customer experience: Leveraging 5G for augmented reality shopping experiences, cashless stores, and personalized marketing.
  • Inventory management: Implementing real-time inventory tracking and management using 5G-connected sensors.
  • Cloud gaming: Launching cloud gaming platforms that leverage 5G’s low latency and high bandwidth for streaming games.
  • Augmented and Virtual Reality (AR/VR): Developing immersive AR and VR experiences enabled for a new entertainment.
  • And so much more…

Overall, 5G represents a significant leap forward in wireless technology. 5G offers faster speeds, lower latency, and improved connectivity to support the increasing demands of our increasingly connected world.

Dish Wireless Standalone 5G infrastructure

“Dish Wireless” refers to the wireless division of Dish Network Corporation, a company primarily known for providing satellite television services in the United States. It is Dish Network’s venture into the wireless telecommunications industry.

The marketing slogan is “The DISH 5G Open RAN network is flexible, scalable and transparent. With DISH Wireless, the only limit is your imagination.” I love it because it is true! The infrastructure is cloud-native, and data streaming is a core piece of it.

Here are some key points about Dish Wireless:

  1. Entry into wireless: Dish Network acquired a substantial amount of wireless spectrum through various acquisitions, including assets from bankrupt companies like Clearwire and Sprint, to enter the wireless market.
  2. 5G network deployment: Dish Wireless has been working on building its own 5G wireless network, aiming to compete with other major wireless carriers in the United States. This network is being developed using 5G technology and provides broadband internet and mobile services.
  3. Building infrastructure: To build its 5G network, Dish Wireless has invested in infrastructure development, including cell towers, small cell sites (coming soon), and other network components. They are working to deploy a nationwide network gradually. When writing this article in September 2023, Dish Wireless already covers >73% of the US population!
  4. Wireless services: Dish Wireless offers a range of wireless services, including mobile phone plans, home internet services, and potentially other IoT (Internet of Things) services.

Dish Wireless 5G from a technical perspective

The Dish infrastructure innovates in many ways compared to most other telco networks operating today:

  • OpenRAN: Built on open standard interfaces between all telco components. Allows Dish Wireless to mix and match vendor software and radios.
  • Virtualization: The entire infrastructure is built on commodity x86 hardware. This provides flexibility and compatibility across many vendors, such as AWS or VMware.
  • Cloud-native: Containerized software, CI/CD style deployment, open observability (key for data generation), chaos testing, etc. These are “firsts” for 5G at scale deployment and revolutionary and might be a turning point in the entire global telco industry.

Data streaming with Apache Kafka in the telco industry

The evolution of telco infrastructure, customer services, and new business models requires real-time end-to-end visibility, fancy mobile apps, and integration with pioneering technologies like 5G for low latency or augmented reality for innovation.

Many enterprises in the telecom sector leverage data streaming with Apache Kafka in various use cases across OSS, BSS, and OTT services.

Enterprise Architecture for Data Streaming with Apache Kafka in the Telco Industry

Learn about trends, architectures, and customer stories from Dish Network, British Telecom, Globe Telecom, Swisscom, and more in the blog post “The State of Data Streaming for Telco in 2023“.

And here is a blog and video recording about Cloud-Native 5G, MEC and OSS/BSS/OTT Telco with Apache Kafka and Kubernetes.

This post specifically looks at the usage of data streaming at Dish Wireless.

How Dish leverages data streaming powered by Apache Kafka for 5G infrastructure

Brian Mengwasser (Vice President, Head of Marketplace and App Design at DISH Wireless) explored the general strategy, technical architecture, and opportunities for customers of Dish Wireless 5G products. You can find the on-demand recording below.

Dish Wireless cloud-native 5G network

Dish Wireless had the benefit (and challenge) of starting from scratch. The entire 5G infrastructure is cloud-native and provides elastic scalability.

Dish Wireless 5G Strategy

Dish Wireless connectivity platform

The Dish Wireless connectivity platform enables real-time communication from any cloud to any device:

Dish Wireless Connectivity Platform

As you can see, the 5G infrastructure requires the combination of many critical software and hardware vendors. AWS, IBM, Dell, VMware, Oracle, and Confluent.

Dish Wireless data platform powered by 5G and Apache Kafka

The enterprise architecture of the Dish Wireless data platform enables the building of decoupled data products. The network stack comprises various components like RAN Core applications, traffic inspection, and observability platforms. The data-driven applications include data engines, service orchestrators, correlation tools, and integration with 3rd party interfaces.

DISH Wireless Data Platform for 5G powered by Data Streaming with Apache Kafka

The central nervous system of the enterprise architecture is the data streaming platform Confluent. It collects from various data sources, processes and correlates real-time and historical data, and shares information with downstream applications like mobile apps, data lakes, and data warehouses.

How to innovate with real-time use cases combining 5G networking and Apache Kafka

5G is an innovative technology that allows building new real-time applications not possible before. However, infrastructure alone does not solve the problem. Software is needed on top of the infrastructure. Therefore, 5G and data streaming are a match made in heaven. Both support real-time data processing at an elastic scale.

Let’s look at a few examples of combining 5G and data streaming with Apache Kafka.

Use Cases for 5G and Data Streaming with Apache Kafka

Connected data streaming in retail

The retail industry has many use cases that can leverage 5G infrastructure and Apache Kafka for logistics, point of sale, and location-based customer services.

5G and Data Streaming with Apache Kafka in Retail

The state of data streaming for retail in 2023 explores the art of the possible. Use cases include omnichannel customer experiences, hybrid shopping models, and hyper-personalized recommendations. Data streaming allows integrating and correlating data in real-time at any scale. I explore customer stories from Walmart, Albertsons, Otto, AO.com, and more,

Connected data streaming in manufacturing

Manufacturing requires real-time information and data consistency across the entire supply chain, including shop floor, supplier integration, intralogistics, interlogistics, and customer-facing aftersales and service. Apache Kafka and 5G help to build hybrid edge deployments:

5G and Data Streaming with Apache Kafka in Manufacturing

The state of data streaming for manufacturing in 2023 explores the evolution of industrial IoT, manufacturing 4.0, and digitalized B2B and customer relations. Most use cases require modern, open, and scalable information sharing. The foci are trending enterprise architectures in the manufacturing industry and data streaming customer stories from BMW, Mercedes, Michelin, or Siemens.

Connected data streaming in automotive

The automotive industry requires B2B integration with suppliers, OT/IT integration from the shop floor to the cloud, and innovative customer-facing apps like mobility services. Many of these challenges can only be solved by combining low-latency networking and real-time data processing at scale with 5G and Apache Kafka.

5G and Data Streaming with Apache Kafka in Automotive

Real-World Deployments of Kafka in the Automotive Industry explores various real-world deployments across several fields. Use cases include connected vehicles, smart manufacturing, and innovative mobility services. Case studies cover car makers such as Audi, BMW, Porsche, and Tesla, plus a few mobility services such as Uber, Lyft, and Here Technologies.

On-demand video: 5G and data streaming @ Dish Wireless

Here is the recording of an interactive discussion and presentation I gave together with Brian Mengwasser (Vice President, Head of Marketplace and App Design at DISH Wireless):

Confluent and Dish about 5G Telco Infrastructure and Apache Kafka

If you just want to see the high level story, watch the following 3min summary on YouTube exploring how Dish Wireless leverages Apache Kafka and Confluent Cloud in their 5G infrastructure:

Telco panel: From Telco to TechCo

If you want to learn more from other telco experts, here is an on-demand panel where I discuss the evolution of data streaming in the telecom sector with peers from several organizations: “How Telcos are Shaping the Future of Communication with Data Streaming“:

  • Proximus (Service Provider): Antonietta Mastroianni, Telco Woman of the Year
  • Telefónica (Service Provider): Mariam Kaynia, VP Mass Market
  • Deloitte (System Integrator): Enterprise Architect and Telco expert Philip Parker
  • TM Forum (Non-Profit Organization): Andy Tiller, Executive Vice President, Products & Services

Industry Panel - From Telco to TechCo with Data Streaming

5G and data streaming are a match made in heaven

Real-time data beats slow data. That’s true for almost every use case. Specifically, most innovative use cases in the telco industry require real-time accurate information, regardless of the scale. No matter if you build internal applications to monitor the networks or external new services for logistics, transportation, retail, or any other industry.

5G infrastructure provides low latency with critical SLAs (thanks to network slicing capabilities). Data streaming with Apache Kafka provides features for collecting, storing, processing, and sharing events. The combination of 5G and data streaming enables innovation, where the only limit is your imagination.

How do you use or plan to use 5G networks together with data to innovate? Let’s connect on LinkedIn and discuss it! Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter.

The post How Apache Kafka helps Dish Wireless building cloud-native 5G Telco Infrastructure appeared first on Kai Waehner.

]]>
The State of Data Streaming for Telco https://www.kai-waehner.de/blog/2023/06/02/the-state-of-data-streaming-for-telco-in-2023/ Fri, 02 Jun 2023 05:38:56 +0000 https://www.kai-waehner.de/?p=5437 This blog post explores the state of data streaming for the telco industry. The evolution of telco infrastructure, customer services, and new business models requires real-time end-to-end visibility, fancy mobile apps, and integration with pioneering technologies like 5G for low latency or augmented reality for innovation. Learn about customer stories from Dish Network, British Telecom, Globe Telecom, Swisscom, and more. A complete slide deck and on-demand video recording are included.

The post The State of Data Streaming for Telco appeared first on Kai Waehner.

]]>
This blog post explores the state of data streaming for the telco industry. The evolution of telco infrastructure, customer services, and new business models requires real-time end-to-end visibility, fancy mobile apps, and integration with pioneering technologies like 5G for low latency or augmented reality for innovation. Data streaming allows integrating and correlating data in real-time at any scale to improve most telco workloads.

I look at trends in the telecommunications sector to explore how data streaming helps as a business enabler, including customer stories from Dish Network, British Telecom, Globe Telecom, Swisscom, and more. A complete slide deck and on-demand video recording are included.

The State of Data Streaming for Telco in 2023

The Telco industry is fundamental for growth and innovation across all industries.

The global spending on telecom services is expected to reach 1.595 trillion U.S. dollars by 2024 (Source: Statista, Jul 2022).

Cloud-native infrastructure and digitalization of business processes are critical enablers. 5G network capabilities and telco marketplaces enable entirely new business models.

5G enables new business models

Presentation of Amdocs / Mavenir:

5G Use Cases with Amdocs and Mavenir

A report from McKinsey & Company says, “74 percent of customers have a positive or neutral feeling about their operators offering different speeds to mobile users with different needs”. The potential for increasing the revenue per user (ARPU) with 5G use cases is enormous for telcos:

Potential from 5G monetization

Telco marketplace

Many companies across industries are trying to build a marketplace these days. But especially the telecom sector might shine here because of its interface between infrastructure, B2B, partners, and end users for sales and marketing.

tmforum has a few good arguments for why communication service providers (CSP) should build a marketplace for B2C and B2B2X:

  • Operating the marketplace keeps CSP in control of the relationship with customers
  • A marketplace is a great sales channel for additional revenue
  • Operating the marketplace helps CSPs monetize third-party (over-the-top) content
  • The only other option is to be relegated to connectivity provider
  • Enterprise customers have decided this is their preferred method of engagement
  • CPSs can take a cut of all sales
  • Participating in a marketplace prevents any one company from owning the customer

Data streaming in the telco industry

Adopting trends like network monitoring, personalized sales and cybersecurity is only possible if enterprises in the telco industry can provide and correlate information at the right time in the proper context. Real-time, which means using the information in milliseconds, seconds, or minutes, is almost always better than processing data later (whatever later means):

Real-Time Data Streaming in the Telco Industry

Data streaming combines the power of real-time messaging at any scale with storage for true decoupling, data integration, and data correlation capabilities. Apache Kafka is the de facto standard for data streaming.

Use Cases for Apache Kafka in Telcois a good article for starting with an industry-specific point of view on data streaming. “Apache Kafka for Telco-OTT and Media Applications” explores over-the-top B2B scenarios.

Data streaming with the Apache Kafka ecosystem and cloud services are used throughout the supply chain of the telco industry. Search my blog for various articles related to this topic: Search Kai’s blog.

From Telco to TechCo: Next-generation architecture

Deloitte describes the target architecture for telcos very well:

Requirements for the next generation telco architecture

Data streaming provides these characteristics: Open, scalable, reliable, and real-time. This unique combination of capabilities made Apache Kafka so successful and widely adopted.

Kafka decouples applications and is the perfect technology for microservices across a telco’s enterprise architecture. Deloitte’s diagram shows this transition across the entire telecom sector:

Cloud-native Microservices and Data Mesh in the Telecom Sector

This is a massive shift for telcos:

  • From purpose-built hardware to generic hardware and elastic scale
  • From monoliths to decoupled, independent services

Digitalization with modern concepts helps a lot in designing the future of telcos.

Open Data Architecture (ODA)

tmforum describes Open Digital Architecture (ODA) as follows:

“Open Digital Architecture is a standardized cloud-native enterprise architecture blueprint for all elements of the industry from Communication Service Providers (CSPs), through vendors to system integrators. It accelerates the delivery of next-gen connectivity and beyond – unlocking agility, removing barriers to partnering, and accelerating concept-to-cash.

ODA replaces traditional operations and business support systems (OSS/BSS) with a new approach to building software for the telecoms industry, opening a market for standardized, cloud-native software components, and enabling communication service providers and suppliers to invest in IT for new and differentiated services instead of maintenance and integration.”

Open Data Architecture ODA tmforum

If you look at the architecture trends and customer stories for data streaming in the next section, you realize that real-time data integration and processing at scale is required to provide most modern use cases in the telecommunications industry.

The telco industry applies various trends for enterprise architectures for cost, flexibility, security, and latency reasons. The three major topics I see these days at customers are:

  • Hybrid architectures with synchronization between edge and cloud in real-time
  • End-to-end network and infrastructure monitoring across multiple layers
  • Proactive service management and context-specific customer interactions

Let’s look deeper into some enterprise architectures that leverage data streaming for telco use cases.

Hybrid 5G architecture with data streaming

Most telcos have a cloud-first strategy to set up modern infrastructure for network monitoring, sales and marketing, loyalty, innovative new OTT services, etc. However, edge computing gets more relevant for use cases like pre-processing for cost reduction, innovative location-based 5G services, and other real-time analytics scenarios:

Hybrid 5G Telco Infrastructure with Data Streaming

Learn about architecture patterns for Apache Kafka that may require multi-cluster solutions and see real-world examples with their specific requirements and trade-offs. That blog explores scenarios such as disaster recovery, aggregation for analytics, cloud migration, mission-critical stretched deployments, and global Kafka.

Edge deployments for data streaming are their own challenges. In separate blog posts, I covered use cases for Kafka at the edge and provided an infrastructure checklist for edge data streaming.

End-to-end network and infrastructure monitoring

Data streaming enables unifying telemetry data from various sources such as Syslog, TCP, files, REST, and other proprietary application interfaces:

Telemetry Network Monitoring with Data Streaming

End-to-end visibility into the telco networks allows massive cost reductions. And as a bonus, a better customer experience. For instance, proactive service management tells customers about a network outage:

Proactive Service Management across OSS and BSS

Context-specific sales and digital lifestyle services

Customers expect a great customer experience across devices (like a web browser or mobile app) and human interactions (e.g., in a telco store). Data streaming enables a context-specific omnichannel sales experience by correlating real-time and historical data at the right time in the proper context:

Omnichannel Retail in the Telco Industry with Data Streaming

Omnichannel Retail and Customer 360 in Real Time with Apache Kafka” goes into more detail. But one thing is clear: Most innovative use cases require both historical and real-time data. In summary, correlating historical and real-time information is possible with data streaming out-of-the-box because of the underlying append-only commit log and replayability of events. A cloud-native Tiered Storage Kafka infrastructure to separate compute from storage makes such an enterprise architecture more scalable and cost-efficient.

The article “Fraud Detection with Apache Kafka, KSQL and Apache Flink” explores stream processing for real-time analytics in more detail, shows an example with embedded machine learning, and covers several real-world case studies.

New customer stories for data streaming in the telco industry

So much innovation is happening in the telecom sector. Automation and digitalization change how telcos monitor networks, build customer relationships, and create completely new business models.

Most telecommunication service providers use a cloud-first approach to improve time-to-market, increase flexibility, and focus on business logic instead of operating IT infrastructure. And elastic scalability gets even more critical with all the growing networks and 5G workloads.

Here are a few customer stories from worldwide telecom companies:

  • Dish Network: Cloud-native 5G Network with Kafka as the central communications hub between all the infrastructure interfaces and IT applications. The standalone 5G infrastructure in conjunction with data streaming enables new business models for customers across all industries, like retail, automotive, or energy sector.
  • Verizon: MEC use cases for low-latency 5G stream processing, such as autonomous drone-in-a-box-based monitoring and inspection solutions or vehicle-to-Everything (V2X).
  • Swisscom: Network monitoring and incident management with real-time data at scale to inform customers about outages, root cause analysis, and much more. The solution relies on Apache Kafka and Apache Druid for real-time analytics use cases.
  • British Telecom (BT): Hybrid multi-cloud data streaming architecture for proactive service management. BT extracts more value from its data and prioritizes real-time information and better customer experiences.
  • Globe Telecom: Industrialization of event streaming for various use cases. Two examples: Digital personalized rewards points based on customer purchases. Airtime loans are made easier to operationalize (vs. batch, where top-up cash is already spent again).

Resources to learn more

This blog post is just the starting point. Learn more about data streaming in the telco industry in the following on-demand webinar recording, the related slide deck, and further resources, including pretty cool lightboard videos about use cases.

On-demand video recording

The video recording explores the telecom industry’s trends and architectures for data streaming. The primary focus is the data streaming case studies. Check out our on-demand recording:

The State of Data Streaming for Telco in 2023

Slides

If you prefer learning from slides, check out the deck used for the above recording:

Fullscreen Mode

Case studies and lightboard videos for data streaming in telco

The state of data streaming for telco is fascinating. New use cases and case studies come up every month. This includes better data governance across the entire organization, real-time data collection and processing data from network infrastructure and mobile apps, data sharing and B2B partnerships with OTT players for new business models, and many more scenarios.

We recorded lightboard videos showing the value of data streaming simply and effectively. These five-minute videos explore the business value of data streaming, related architectures, and customer stories. Stay tuned; I will update the links in the next few weeks and publish a separate blog post for each story and lightboard video.

And this is just the beginning. Every month, we will talk about the status of data streaming in a different industry. Manufacturing was the first. Financial services second, then retail, telcos, gaming, and so on…

Let’s connect on LinkedIn and discuss it! Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter.

The post The State of Data Streaming for Telco appeared first on Kai Waehner.

]]>
Reimagine sports and gaming with data streaming: A table tennis success story built with Apache Kafka https://www.kai-waehner.de/blog/2022/09/09/reimagine-sports-gaming-with-data-streaming-with-apache-kafka/ Fri, 09 Sep 2022 10:48:10 +0000 https://www.kai-waehner.de/?p=4803 The sports world is changing. Digitalization is everywhere. Cameras and sensors analyze matches. Stadiums get connected and incorporate mobile apps and location-based services. Players use social networks to influence and market themselves and consumer products. Real-time data processing is crucial for most innovative sports use cases. This blog post explores how data streaming with Apache Kafka helps reimagine the sports industry, showing a concrete example from the worldwide table tennis organization.

The post Reimagine sports and gaming with data streaming: A table tennis success story built with Apache Kafka appeared first on Kai Waehner.

]]>
The sports world is changing. Digitalization is everywhere. Cameras and sensors analyze matches. Stadiums get connected and incorporate mobile apps and location-based services. Players use social networks to influence and market themselves and consumer products. Real-time data processing is crucial for most innovative sports use cases. This blog post explores how data streaming with Apache Kafka helps reimagine the sports industry, showing a concrete example from the worldwide table tennis organization.

 

Real-Time Sports and Gaming with Data Streaming powered by Apache Kafka

Innovation in sports and gaming with real-time analytics

Reimagining a data architecture to provide real-time data flow for sporting leagues and events is an enormous challenge. However, digitalization enables a ton of innovative use cases to improve user experiences and engage better with players, fans, and business partners.

Think about wonderful customer experiences with gamification when watching a match, live betting, location-based services in the stadium, automated payments, coupons, integration with connected fan shops and shopping malls, and so on.

Reimaging the Fan Experience by Wipro Digital
Source: Wipro Digital

Improving the sport and the related matches itself is another excellent enhancement, including analyzing and monitoring gameplay, the health of players, security, and other use cases.

Digitalization in the Connected Stadium by Wipro Digital
Source: Wipro Digital
Using data is a fundamental change in sports. A very early example is the famous story of Moneyball: The Art of Winning an Unfair Game: A book by Michael Lewis, published in 2003, about the Oakland Athletics baseball team and its general manager, Billy Beane. Its focus is the team’s analytical, evidence-based, sabermetric approach to assembling a competitive baseball team despite Oakland’s small budget. A film based on Lewis’ book, starring Brad Pitt and Jonah Hill, was released in 2011.

Whether you are a coach or player, a fan, or a business related to sports, data is critical to success. Wipro Digital’s whitepaper “Connected Stadium Solutions” explores the motivation and various use cases for re-imaging sports.

And most use cases are only possible with real-time data. That’s where data streaming comes into play… Let’s look at a concrete success story.

The current state of table tennis

World Table Tennis (WTT) is a business created by the International Table Tennis Federation (ITTF) to manage the official professional Table Tennis series of events and its commercial rights. Table tennis is more significant than you might think: There are over 200 member associations across the globe within the ITTF.

World Table Tennis also leads the digital sports transformation and commercializes its software application for real-time event scoring worldwide with Apache Kafka.

Previously, ITTF scoring was processed manually with a desktop-based, on-venue results system (OVR) – an on-premises solution to process match data that calculated rankings and records, then sent event information to other systems, such as scoreboards.

Real-time data is essential in the sporting world. The ITTF team re-engineered their data system in 18 months, moving from solely on-premises infrastructure to a cloud-native data system that uses fully managed Confluent Cloud with Apache Kafka as its central nervous system.

Real-time analytics with Kafka to provide stats, engage with fans, and integrate with gaming and betting

Vatsan Rama (Director of IT, ITTF Group) talked in the Confluent podcast about Streaming Real-Time Sports Analytics with Apache Kafka for World Table Tennis. Here are several exciting use cases for real-time analytics around table tennis:

  • Real-time stats of scores and any other interesting facts in a match are sent to scoreboards, media broadcasters, betting providers, and other 3rd party consumers
  • The empire kicks off the recording of a live feed (stream of events)
  • Analysis of player acting in real-time and comparing it to historical data (including advanced use cases like ball spin)
  • Smart referees using video analytics in real-time (like fault, net, offsite, foul, etc.)
  • Stateful statistics during the broadcast, e.g., the longest ball play (rally) in the last 24 months
  • Batch analytics of historical data for coaching and player preparation against the next opponent
  • Worldwide consolidation of data from events and leagues across the globe and across different (sub) organizations
  • Customer 360 with mobile apps and real-time clickstream analytics to know the fans better and increase revenue (aka fan engagement)
  • Data exchange with business partners, e.g., low latency with SLAs for critical use cases like a live betting API integration
  • Innovative new business models of integration with cutting-edge technologies like blockchain, NFTs, and crypto
That’s a lot of exciting use cases across different business units, isn’t it? Most can be adapted to any other sport.
So, if you work in any company related to sporting, why wait any longer? Kick off with your first data streaming project!

Why data streaming with Kafka makes the difference in processing and sharing sports data

Data connectivity across various interfaces, APIs, and systems plus correlation of the data in real-time is key for modernizing the data infrastructure for any sports use case:

Real-time data hub and connectivity in sports by Wipro Digital
Source: Wipro Digital

Apache Kafka is the de facto standard for data streaming. Let’s look at why data streaming is a perfect solution for modernizing sports use cases:

  • Real-time data integration and processing: Most innovative sports use cases only work well if the information across systems is correlated in real-time. Kafka Connect, Kafka Streams, KSQL, and other components allow using a single infrastructure for data processing.
  • Storage: True decoupling and backpressure handling are crucial as slow consumers have different data processing capabilities than real-time consumers. The replayability of historical information does not require yet another database or data lake. Tiered Storage enables cost-efficient long-term storage in Kafka.
  • Hybrid edge infrastructure: Some use cases require low-latency or offline compute power. Kafka is perfect, being a single platform for real-time integration, data processing, and storage. Real-time replication between separate Kafka environments provides out-of-the-box support for edge analytics and sometimes disconnected environments.
  • Data governance across stakeholders and environments: Data privacy, access control, compliance, and zero trust are critical characteristics of any modern IT infrastructure. The Kafka ecosystem monitors and enforces the end-to-end data flow using a Schema Registry for defining contracts between independent data producers and downstream consumers and additional tools on top of data lineage and distributed tracing.
  • Fully managed cloud-first approach: The cloud enables focusing on business problems and innovation. Only manage your own Kafka clusters if serverless SaaS is impossible for security, cost, or latency reasons! Don’t trust marketing and make sure your Kafka service is indeed fully managed, not just partially managed, where you take over the risk and operation burden.
  • Omnichannel customer 360: Most businesses and fans require access to information across different interfaces (including web browsers, mobile apps, devices, smart point of sale, location-based services, and so on). Kafka’s unique combination of real-time messaging and storage provides out-of-the-box support for building decoupling customer 360 applications.
  • Data sharing and open API for B2B exchange: Most sports use cases hold various data sets that enable new internal and external use cases. Data sharing across business units and 3rd party business partners or public Open APIs in real-time allows innovation to improve the customer experience or establish brand new business models. Kafka and related cloud services enable real-time data exchange.
  • Proactive cybersecurity: Digitalization comes with its risks. Stars use social networks. Stadiums and shops get connected. Cameras monitor players and environments. And so on. Real-time situational awareness and threat intelligence are crucial to protect the data, and people are essential in a world where everything is digital and integrated.
  • Integration with blockchain, crypto, and NFT: Beyond the current crypto winter, many innovative use cases will come for the metaverse and decentralized identity management. one example is selling instant moments in sports via NFTs. Kafka is the middleware between regular applications and the NFT and crypto trading platforms.

Reimagine sports and turn customers into fans with data streaming using Apache Kafka

Real-time data processing is crucial for most innovative sports use cases. Most events and actions need to be processed while the information is still hot. If data is stored at rest in a database or data lake, it is too late to act on the data for innovative use cases like notifications, recommendations, alerts, gaming, and many other use cases.
Here is a concrete Kafka-powered example combining live video streaming, gamification, CRM integration, crypto and NFT services, and more:
Sports gamification with Apache Kafka using CRM Crypto NFT Social Video Live Stream
Data streaming with the de facto standard Apache Kafka is the foundation of innovation in sports. No matter if you work in a sports organization, retail, security, betting, marketing, or any other related company. The cloud is a fundamental change for sports. Organizations do not need to host and operate the infrastructure anymore. They can quickly build new use cases focusing on the business logic with small teams to innovate quickly. The example of the worldwide table tennis organization is a great real-world example.
How do you use real-time data in a sports environment? Or is batch processing still sufficient for your use cases? What role plays data streaming in these scenarios? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

The post Reimagine sports and gaming with data streaming: A table tennis success story built with Apache Kafka appeared first on Kai Waehner.

]]>
Kafka for Real-Time Replication between Edge and Hybrid Cloud https://www.kai-waehner.de/blog/2022/01/26/kafka-cluster-linking-for-hybrid-replication-between-edge-cloud/ Wed, 26 Jan 2022 12:45:05 +0000 https://www.kai-waehner.de/?p=4131 Not all workloads should go to the cloud! Low latency, cybersecurity, and cost-efficiency require a suitable combination of edge computing and cloud integration. This blog post explores hybrid data streaming with Apache Kafka anywhere. A live demo shows data synchronization from the edge to the public cloud across continents with Kafka on Hivecell edge hardware and serverless Confluent Cloud.

The post Kafka for Real-Time Replication between Edge and Hybrid Cloud appeared first on Kai Waehner.

]]>
Not all workloads should go to the cloud! Low latency, cybersecurity, and cost-efficiency require a suitable combination of edge computing and cloud integration. This blog post explores architectures and design patterns for software and hardware considerations to deploy hybrid data streaming with Apache Kafka anywhere. A live demo shows data synchronization from the edge to the public cloud across continents with Kafka on Hivecell edge hardware and serverless Confluent Cloud.

Real-Time Edge Computing and Hybrid Cloud with Apache Kafka Confluent and Hivecell

Not every workload should go into the cloud

Almost every company has a cloud-first strategy in the meantime. Nevertheless, not all workloads should be deployed in the public cloud. A few reasons why IT applications still run at the edge or in a local data center:

  • Cost-efficiency: The more data produced at the edge, the more costly it is to transfer everything to the cloud. This significant data transfer is often non-sense for high volumes of raw sensor and telemetry data.
  • Low latency: Some use cases require data processing and correlation in real-time in milliseconds. Communication with remote locations increases the response time significantly.
  • Bad, unstable internet connection: Some environments do not provide good connectivity to the cloud or are entirely disconnected all the time or for some time of the day.
  • Cybersecurity with air-gapped environments: The disconnected Edge is common in safety-critical environments. Controlled data replication is only possible via unidirectional hardware gateways or manual human copy tasks within the site.

Here is a great recent example of why not all workloads should go to the cloud: AWS outage that created enormous issues for visitors to Disney World as the mobile app features are running online in the cloud. Business continuity is not possible if the connection to the cloud is offline:

AWS Outage at Disney World

The Edge is…

To be clear: The term ‘edge’ needs to be defined at the beginning of every conversation. I define the edge as having the following characteristics and needs:

  • Edge is NOT a data center
  • Offline business continuity
  • Often 100+ locations
  • Low-footprint and low-touch
  • Hybrid integration

Hybrid cloud for Kafka is the norm; not an exception

Multi-cluster and cross-data center deployments of Apache Kafka have become the norm rather than an exception. Several scenarios require multi-cluster solutions. Real-world examples have different requirements and trade-offs, including disaster recovery, aggregation for analytics, cloud migration, mission-critical stretched deployments, and global Kafka.

Global Event Streaming with Apache Kafka Confluent Multi Region Clusters Replication and Confluent Cloud

I posted about this in the past. Check out “architecture patterns for distributed, hybrid, edge and global Apache Kafka deployments“.

Apache Kafka at the Edge

From a Kafka perspective, the edge can mean two things:

  • Kafka clients at the edge connecting directly to the Kafka cluster in a remote data center or public cloud, connecting via a native client (Java, C++, Python, etc.) or a proxy (MQTT Proxy, HTTP / REST Proxy)
  • Kafka clients AND the Kafka broker(s) deployed at the edge, not just the client applications

Both alternatives are acceptable and have their trade-offs. This post is about the whole Kafka infrastructure at the edge (potentially replicating to another remote Kafka cluster via MirrorMaker, Confluent Replicator, or Cluster Linking).

Check out my Infrastructure Checklist for Apache Kafka at the edge for more details.

I also covered various Apache Kafka use cases for the edge and hybrid cloud across industries like manufacturing, transportation, energy, mining, retail, entertainment, etc.

Hardware for edge computing and analytics

Edge hardware has some specific requirements to be successful in a project:

  • No special equipment for power, air conditioning, or networking
  • No technicians are required on-site to install, configure, or maintain the hardware and software
  • Start with the smallest footprint possible to show ROI
  • Easily add more compute power as workload expands
  • Deploy and operate simple or distributed software for containers, middleware, event streaming, business applications, and machine learning
  • Monitor, manage and upgrade centrally via fleet management and automation, even when behind a firewall

Devon Energy: Edge and Hybrid Cloud with Kafka, Confluent, and Hivecell

Devon Energy (formerly named WPX Energy) is a company in the oil & gas industry. The digital transformation creates many opportunities to improve processes and reduce costs in this vertical. WPX leverages Confluent Platform on Hivecell edge hardware to realize edge processing and replication to the cloud in real-time at scale.

The solution is designed for real-time decision-making and future closed-loop control optimization. Devon Energy conducts edge stream processing to enable real-time decision-making at the well sites. They also replicate business-relevant data streams produced by machine learning models and analytical preprocessed data at the well site to the cloud, enabling Devon Energy to harness the full power of its real-time events:

Devon Energy Apache Kafka and Confluent at the Edge with Hivecell and Cluster Linking to the Cloud

A few interesting notes about this hybrid Edge to cloud deployment:

  • Improved drilling and well completion operations
  • Edge stream processing / analytics + closed-loop control ready
  • Vendor agnostic (pumping, wireline, coil, offset wells, drilling operations, producing wells)
  • Replication to the cloud in real-time at scale
  • Cloud agnostic (AWS, GCP, Azure)

Live Demo – How to deploy a Kafka Cluster in production on your desk or anywhere

Confluent and Hivecell delivered the promise of bringing a piece of Confluent Cloud right there to your desk and delivering managed Kafka on a cloud-native Kubernetes cluster at the edge. For the first, Kafka deployments run time at scale at the edge, enabling local Kafka clusters at oil drilling sites, on ships, in factories, or in quick-service restaurants.

In this webinar, we showed how it works during a live demo – where we deploy an edge Confluent cluster, stream edge data, and synchronize it with Confluent Cloud across regions and even continents:

Hybrid Kafka Edge to Cloud Replication with Confluent and Hivecell

Dominik and I had our Hivecell cluster in our home in Texas, USA, respectively, Bavaria, Germany. We synchronized events across continents to a central Confluent Cloud cluster and simulated errors and cloud-native self-healing by “killing” one of my Hivecell nodes in Germany.

The webinar covered the following topics:

Edge computing as the next significant paradigm shift in IT
Apache Kafka and Confluent use cases at the Edge in IoT environments
– An easy way of setting up Kafka clusters where ever you need them, including fleet management and error handling
– Hands-on examples of Kafka cluster deployment and data synchronization

Slides and on-demand video recording

Here are the slides:

And the on-demand video recording:

Video Recording - Kafka, Confluent and Hivecell at the Edge and Hybrid Cloud

 

 

Real-time data streaming everywhere required hybrid edge to cloud data streaming!

A cloud-first strategy makes sense. Elastic scaling, agile development, and cost-efficient infrastructure allow innovation. However, not all workloads should go to the cloud for latency, cost, or security reasons.

Apache Kafka can be deployed everywhere. Essential for most projects is the successful deployment and management at the edge and the uni- or bidirectional synchronization in real-time between the edge and the cloud. This post showed how Confluent Cloud, Kafka at the Edge on Hivecell edge hardware, and Cluster Linking enable hybrid streaming data exchanges.

How do you use Apache Kafka? Do you deploy in the public cloud, in your data center, or at the edge outside a data center? How do you process and replicate the data streams? What other technologies do you combine with Kafka? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

The post Kafka for Real-Time Replication between Edge and Hybrid Cloud appeared first on Kai Waehner.

]]>
Apache Kafka in the Public Sector – Part 2: Smart City https://www.kai-waehner.de/blog/2021/10/12/apache-kafka-public-sector-government-part-2-smart-city-iot-transportation-mobility-services/ Tue, 12 Oct 2021 07:48:48 +0000 https://www.kai-waehner.de/?p=3805 The public sector includes many different areas. Some groups leverage cutting-edge technology, like military leverage. Others like the public administration are years or even decades behind. This blog series explores both edges to show how data in motion powered by Apache Kafka adds value for innovative new applications and modernizing legacy IT infrastructures. This is part 2: Use cases and architectures for a Smart City.

The post Apache Kafka in the Public Sector – Part 2: Smart City appeared first on Kai Waehner.

]]>
The public sector includes many different areas. Some groups leverage cutting-edge technology, like military leverage. Others like the public administration are years or even decades behind. This blog series explores how the public sector leverages data in motion powered by Apache Kafka to add value for innovative new applications and modernizing legacy IT infrastructures. This post is part 2: Use cases and architectures for a Smart City.

Apache Kafka in the Public Sector for Smart City Infrastructure

Blog series: Apache Kafka in the Public Sector and Government

This blog series explores why many governments and public infrastructure sectors leverage event streaming for various use cases. Learn about real-world deployments and different architectures for Kafka in the public sector:

  1. Life is a Stream of Events
  2. Smart City (THIS POST)
  3. Citizen Services
  4. Energy and Utilities
  5. National Security

Subscribe to my newsletter to get updates immediately after the publication. Besides, I will also update the above list with direct links to this blog series’s posts once published.

As a side note: If you wonder why healthcare is not on the above list. Healthcare is another blog series on its own. While the government can provide public health care through national healthcare systems, it is part of the private sector in many other cases.

Real-time is Mandatory for a Smart City Everywhere

I wrote a lot about event streaming and Apache Kafka for smart city infrastructure and use cases. I won’t repeat myself. Check out the following event Streaming with Kafka as Foundation for a Smart City and Apache Kafka and MQTT for the Last Mile IoT integration in a Smart City.

This post dives deeper into architectural questions and how collaboration with 3rd party services can look from the government’s perspective and public administration of a smart city.

The Need for Real-time Data Processing Everywhere in a Smart City and how Kafka helps

A smart city is a very complex beast. I am glad that I only cover technology and not regulatory or political discussions. However, even the technology standpoint is not straightforward. A smart city needs to correlate data across data centers, devices, vehicles, and many other things. This scenario is an actual internet of things (IoT) and therefore includes plenty of different technologies, communication paradigms, and infrastructures:

Hybrid Edge Cloud Architecture for a Smart City with Apache Kafka

Smart city projects require the integration of various 1st party and 3rd party services. Most use cases only work well if that data is correlated in real-time; think about traffic routing, emergency alerts, predictive monitoring and maintenance, mobility services such as ride-hailing, and other fancy smart city use cases. Without real-time data processing, the use case is either a bad user experience or not cost-efficient. Hence, Kafka is adopted more and more for these scenarios.

Low Latency and 5G Networks for (some) Data Streaming Use Cases

The term “real-time” needs to be defined. Processing data in a few seconds is good enough in most use cases and a significant game-changer compared to hourly, daily, or weekly batch processing.

Having said this, some use cases like location-based upselling in retail or condition monitoring in equipment and manufacturing require lower latency, meaning sub-second end-to-end data processing.

Here is an example of leveraging 5G networks for low latency. The demo was built by the AWS Wavelength team, Verizon, and Confluent:

Connected Hybrid Services and Low Latency via Open API

Most real-world deployments use separation of concerns: Low-latency use cases run at the edge and everything else in the regular data center or public cloud region. Read the article “Low Latency Data Streaming with Apache Kafka and Cloud-Native 5G Infrastructure” for more details.

At this point, it is important to remind everybody that Kafka (and any IT software) is not hard real-time and not built for the OT world and embedded systems. Learn more in the article “Kafka is NOT hard real-time but soft real-time“. Also, (soft) real-time is not competitive to batch processing and data warehouse/data lake architecture. As you can learn in “Serverless Kafka in a Cloud-native Data Lake Architecture” it is complimentary.

Collaboration between Government, City, and 3rd Party via Open API

Real-time data processing is crucial in implementing smart city use cases. Additionally, most smart city projects require collaboration between different teams, infrastructures, and 3rd party services.

Let’s take a look at three very different real-world event streaming deployments to see the broad spectrum of use cases and integration challenges:

  • Ohio Department of Transportation’s government-owned event streaming platform
  • Deutsche Bahn’s single source of truth for customer communication in real-time and 3rd party integration with the Google Maps API
  • Free Now’s mobility service in the cloud for real-time data correlation in compliance with regional laws and independent vehicles/drivers.

Ohio Department of Transportation (ODOT) – A Government-Owned Event Streaming Platform

Ohio Department of Transportation (ODOT) has an exciting initiative: DriveOhio. It aims to organize and accelerate smart vehicle and connected vehicle projects in the State of Ohio. DriveOhio offers to be the single point of contact for policymakers, agencies, researchers, and private companies to collaborate with one another on intelligent transportation efforts around the state.

ODOT presented their real-time data transportation data platform at the last Kafka Summit Americas:

Apache in Public Sector Government and Smart City at Ohio Department of Transportation

The whole Kafka ecosystem powers ODOT’s cloud-native Event Streaming Platform (ESP). The platform enables continuous data integration and stream processing for transactional and analytical workloads. The ESP runs on Kubernetes to provide an elastic, flexible, and scalable infrastructure for real-time data processing.

Deutsche Bahn – Single Source of Truth and Google Maps Integration in Real-time

Deutsche Bahn is a German railway company. It is a private joint-stock company (AG), with the Federal Republic of Germany being its single shareholder. I already talked about their real-time traveler information system in another blog post: “Mobility Services and Transportation powered by Apache Kafka“.

They leverage the Apache Kafka ecosystem powered by Confluent because it combines several characteristics that you would have to integrate with different technologies otherwise:

  • Real-time messaging
  • Data integration
  • Data correlation
  • Storage and caching
  • Replication and high availability
  • Elastic scalability

This example is excellent for this blog. It shows how an existing solution needs connectivity to other internal applications and 3rd party services to provide a better customer experience and expand the customer base.

Recently, Deutsche Bahn integrated its platform with Google Maps via Google’s Open API. In addition to a better customer experience, the railway company can reach out to many new end-users to expand their business. The Railway-News has a good article about this integration. Here is my summary:

Mobility Service for Traveler Information at Deutsche Bahn with Apache Kafka and Google Maps Integration

Free Now – Mobility Service in the Cloud Connected to Regional Laws and Vehicles

Free Now (former MyTaxi) is a mobility service. Their app uses mobile and GPS technology to match taxi drivers with passengers based on availability and proximity. Mobility services need to integrate with other 3rd party services for routing, payment, tax implications, and many different use cases.

Here is one example from Free Now’s Kafka Summit talk where they explain the added value of continuous stream processing for calculating context-specific dynamic pricing:

FREE NOW my taxi Data in Motion with Kafka and Confluent Cloud for Stateful Streaming Analytics

The public administration is always involved when a new mobility service is released to the public. While some cities build their mobility services, the reality is that most governments provide the infrastructure together with the Telco providers, and 3rd party vendors provide the mobility service. The specific relationship between the government, city, and mobility service provider differs across regions, countries, and continents.

Almost every mobility service uses Kafka as its backbone. Google for your favorite mobility service across the globe and add “Kafka” to the search. Chances are very high that you find some excellent blog posts, conferences talks, or at least job offers from the mobility service’s recruiting page. Here are just a few examples that posted great content about their Kafka usage: Uber, Lyft, Grab, Otonomo, Here Technologies, and many more.

Data in Motion with Kafka for a Connected and Innovative Smart City

Smart City is a vast topic. Many stakeholders are involved. Collaboration and Open APIs are critical for success. In most cases, governments work together with telco providers, infrastructure providers such as the cloud hyperscalers, and software vendors (including an event streaming platform like Kafka).

Most valuable and innovative smart city use cases require data processing in real-time. The use cases require data integration, storage, and backpressure handling, and data correlation. Event Streaming is the ideal technology for these use cases. Examples from the Ohio Department of Transportation, Deutsche Bahn and its Google Maps integration, and Free Now showed a few different angles to realize successful smart city projects.

How do you leverage event streaming in the public sector? Are you working on smart city projects? What technologies and architectures do you use? What projects did you already work on or are in the planning? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

The post Apache Kafka in the Public Sector – Part 2: Smart City appeared first on Kai Waehner.

]]>
Cloud-Native 5G, MEC and OSS/BSS/OTT Telco with Apache Kafka and Kubernetes https://www.kai-waehner.de/blog/2021/09/06/cloud-native-5g-mec-oss-bss-ott-telco-powered-by-kafka-and-kubernetes/ Mon, 06 Sep 2021 07:12:15 +0000 https://www.kai-waehner.de/?p=3723 This post shares a slide deck and video recording for architectures and use cases for event streaming with the open-source frameworks Kubernetes and Apache Kafka in the Telco sector. Demonstrated use cases include building 5G networks, NFV management and orchestration, proactive OSS network monitoring, integration with hybrid and multi-cloud BSS and OTT services.

The post Cloud-Native 5G, MEC and OSS/BSS/OTT Telco with Apache Kafka and Kubernetes appeared first on Kai Waehner.

]]>
This post shares a slide deck and video recording for architectures and use cases for event streaming with the open-source frameworks Kubernetes and Apache Kafka in the Telco sector. Telecom enterprises modernize their edge and hybrid cloud infrastructure with Kafka and Kubernetes to provide an elastic, scalable real-time infrastructure for high volumes of data. Demonstrated use cases include building 5G networks, NFV management and orchestration, proactive OSS network monitoring, integration with hybrid and multi-cloud BSS and OTT services.

Cloud Native Telecom 5G MEC OSS BSS OTT powered by Kubernetes and Apache Kafka

Video Recording – Cloud-Native Telco for 5G, MEC and OSS/BSS/OTT with Kafka and Kubernetes

Here is the video recording:

Slide Deck – Kafka in the Telecom Sector (OSS/BSS/OTT)

Here is the related slide deck for the video recording:

Use Cases and Architectures for Apache Kafka in the Telecom Sector

This section shares various other blog posts about event streaming, cloud-native architectures, and use cases in the telecom sector powered by Apache Kafka.

Topics include:

  • Use cases and real-world deployments
  • Innovative OSS, BSS, and OTT scenarios
  • Edge, hybrid, and multi-cloud architectures
  • Low-latency cloud-native MEC (multi-access edge computing)
  • Cybersecurity with situational awareness and threat intelligence
  • Comparison of different event streaming frameworks and cloud services

Real-Time Data Beats Slow Data in the Telco Industry

Think about the use cases in your project, business unit, and company: Real-time data beats slow data in almost all use cases in the telco industry. That’s why so many next-generation telco service providers and business applications leverage event streaming powered by Apache Kafka.

Do you already leverage Apache Kafka in the telecom sector? What use cases did you or do you plan to implement with Kafka and Kubernetes? How does your (future) edge or hybrid architecture look like? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

The post Cloud-Native 5G, MEC and OSS/BSS/OTT Telco with Apache Kafka and Kubernetes appeared first on Kai Waehner.

]]>
Panel Discussion about Kafka, Edge, Networking and 5G in Oil and Gas and Mining Industry https://www.kai-waehner.de/blog/2021/08/20/panel-discussion-apache-kafka-edge-networking-5g-oil-and-gas-mining-industry/ Fri, 20 Aug 2021 07:40:43 +0000 https://www.kai-waehner.de/?p=3698 The oil & gas and mining industries require edge computing for low latency and zero trust use cases. Most IT architectures are hybrid with big data analytics in the cloud and safety-critical data processing in disconnected and often air-gapped environments. This blog post shares a panel discussion that explores the challenges, use cases, and hardware/software/network technologies to reduce cost and innovate. A key focus is on the open-source framework Apache Kafka, the de facto standard for processing data in motion at the edge and in the cloud.

The post Panel Discussion about Kafka, Edge, Networking and 5G in Oil and Gas and Mining Industry appeared first on Kai Waehner.

]]>
The oil & gas and mining industries require edge computing for low latency and zero trust use cases. Most IT architectures are hybrid with big data analytics in the cloud and safety-critical data processing in disconnected and often air-gapped environments. This blog post shares a panel discussion that explores the challenges, use cases, and hardware/software/network technologies to reduce cost and innovate. A key focus is on the open-source framework Apache Kafka, the de facto standard for processing data in motion at the edge and in the cloud.

Apache Kafka and Edge Networks in Oil and Gas and Mining

Apache Kafka at the Edge and in Hybrid Cloud

I explored the usage of event streaming at the edge and in hybrid cloud scenarios in lots of detail in the past. Hence, instead of yet another description, check out the following posts to learn about use cases and architectures:

Panel Discussion: Kafka, Network Infrastructure, Edge, and Hybrid Cloud in Oil and Gas

Here is the panel discussion. The conversation includes the software and the hardware/infrastructure/networking perspective. It is a great mix of exploring use cases from the oil&gas and mining industries for processing data in motion and technical facts about communication/radio/telco infrastructures. I think it was really a great mix of topics that are heavily related and depend on each other to deploy a project successfully.

Speakers:

  • Andrew Duong (Confluent): Moderator
  • Kai Waehner (Confluent): Expert on hybrid software architectures and data in motion
  • Dion Stevenson (Tait Communications): Expert on hardware and network infrastructure
  • Sohan Domingo (Tait Communications): Expert on hardware and network infrastructure

Now enjoy the discussion and feel free to share any thoughts or feedback:

Kafka in the Energy Sector including Oil and Gas, Mining, Smart Grids

An example architecture for hybrid event streaming in the oil and gas industry can look like the following:

Data in Motion for Energy Production - Upstream Midstream Downstream - at the Edge with Kafka in Oil and Gas and Mining

 

If you want to learn more about event streaming with Apache Kafka in the energy industry (including oil and gas, mining, smart grids), check out the following blog post:

Notes about the Kafka, Edge, Oil, and Gas, Mining Conversation

If you prefer reading or just listening to a few of the sections, here are some notes about the flow of the panel discussion:

0-4:20– Introduction to Tait Communications
4:45- 7:20– Introduction to Confluent and high-level definition of Edge & IoT
7:30- 10:10– Voice communication discussion about connectivity, the importance of context at the point of time through data so the right response can be determined sooner. No matter where they are, what they’re doing, we get communication’s at the edge to suit the needs of a modern workforce.
10:15-12:10 ML/AI at the Edge. Continuous monitoring of all infrastructure and sensors for safety purposes. Event streaming to help send alerts in the real and also for post-event analysis too. There’s a process to get into AI- Infra, then pipeline, then AI, not the other way around.
12:15- 14:42– 5G can’t solve all problems- security, privacy, compliance considerations as to where to process the data, and beyond this, the cost is also a factor. Considerations for Cloud and on-premise.
14:50 – 16:03– 5G discussion. There are real-world limitations like cell towers. You also need contextual awareness at the Edge and making decisions there (local awareness)- e.g., Gas on a vehicle that’s disconnected on the backend.
16:15 – 20:10– Manufacturing & Supply chain, radios & communications today and what’s possible in the future. Having IoT at the Edge manufacturing optimizations with low latency requirements where cloud-first doesn’t make sense. On the flip side, if it’s not safety-critical or things like an ERP system, this can be pushed into the cloud.
20:10 -23:35– Mining side of things, lacking connectivity and preference for edge-based usage. Autonomous trucks, decisions on the edge rather than delays or even milliseconds by going to the cloud. Doing it locally at the edge is more efficient in some cases. Collecting all sensors on the trucks, temperatures, etc., even whilst disconnected, but once the connection is re-established at the base, that data can be uploaded. ‘Last mile’ analytics. Confluent is IT, not OT- we integrate with IT systems, but the OT world is separated.
23:38- 26:25: Digital mobile radios and voice communications, but with autonomous trucks, you don’t have that. This is where our Unified Vehicle comes in where it’s a combination of Digital Mobile Radio(DMR) and LTE and intelligent algorithms help with failover from DMR to LTE if there are connectivity issues. Voice is still important despite the amount of technology being in use and data exploration.
27:03 – 31:15– Where to start with data exploration- Start with your requirements. Does it really need computing at the edge to solve the problems, or can Cloud work? Event streaming at the edge and use case where it makes sense. How customers get started, simple use cases to be solved first before the more advanced ones (building the foundations, data pipelines, simple rules, and test). AWS Wavelength team collaboration and edge-making sense with low latency and security requirements.
31:15- 32:54– Need to consider your bandwidth & latency as to whether edge computing makes sense. Driverless cars.
33:15 – 37:49- Where to go from here with existing customers. How do they upgrade, what customers are coming to Tait for, and the use of video as part of all this for public safety.
Health & safety, monitoring driver alertness in NZ. Truck performance, driver performance, and when to take a break. That decision needs to be made as a combination between edge and cloud.
37:50 – 40:55- Connected vehicles and cars- it’s not as hard as it looks. Gas stations with edge computing, loyalty systems, etc., and the importance of after-sales for connected vehicles. GDPR and compliance by aggregation of data instead of as some countries have high privacy issues.
41:00-44:10- Joint project with Tait in the law enforcement space. Voice to text, use of metadata, and combining voice + video with event streaming.

Kafka for Next-Generation Edge Computing

The energy industry, including oil&gas and mining, is super interesting from a technical perspective. It requires edge and cloud computing. Upstream, midstream, and downstream is a complex and safety-critical supply chain. Processing data in motion with Apache Kafka leveraging various network infrastructures is a great opportunity to innovate and reduce costs across various use cases.

Do you already leverage Apache Kafka for processing data in motion in the oil and gas, mining, or any other industry? How does your (future) edge or hybrid architecture look like? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

 

The post Panel Discussion about Kafka, Edge, Networking and 5G in Oil and Gas and Mining Industry appeared first on Kai Waehner.

]]>
Low Latency Data Streaming with Apache Kafka and Cloud-Native 5G Infrastructure https://www.kai-waehner.de/blog/2021/05/23/apache-kafka-cloud-native-telco-infrastructure-low-latency-data-streaming-5g-aws-wavelength/ Sun, 23 May 2021 08:06:59 +0000 https://www.kai-waehner.de/?p=3401 This blog post explores low latency data processing and edge computing with Apache Kafka, 5G telco networks, and cloud-native AWS Wavelength infrastructure. Learn about use cases and architectures across industries to combine mission-critical and analytics workloads, and a concrete hybrid implementation for energy production and distribution.

The post Low Latency Data Streaming with Apache Kafka and Cloud-Native 5G Infrastructure appeared first on Kai Waehner.

]]>
Many mission-critical use cases require low latency data processing. Running these workloads close to the edge is mandatory if the applications cannot run in the cloud. This blog post explores architectures for low latency deployments leveraging a combination of cloud-native infrastructure at the edge, such as AWS Wavelength, 5G networks from Telco providers, and event streaming with Apache Kafka to integrate and process data in motion.

The blog post is structured as follows:

  • Definition of “low latency data processing” and the relation to Apache Kafka
  • Cloud-native infrastructure for low latency computing
  • Low latency mission-critical use cases for Apache Kafka and its relation to analytical workloads
  • Example for a hybrid architecture with AWS Wavelength, Verizon 5G, and Confluent

Low Latency Data Processing and Edge Computing with Apache Kafka, 5G Telco Network and AWS Wavelength

Low Latency Data Processing

Let’s begin with a definition. “Real-time” and “low latency” are terms that different industries, vendors, and consultants use very differently.

What is real-time and low latency data processing?

For the context of this blog, real-time data processing with low latency means processing low or high volumes of data in ~5 to 50 milliseconds end-to-end. On a high level, this includes three parts:

  • Consume events from one or more data sources, either directly from a Kafka client or indirectly via a gateway or proxy.
  • Process and correlate events from one or more data sources, either stateless or stateful, with the internal state in the application and stream processing features like sliding windows.
  • Produce events to one or more data sinks, either directly from a Kafka client or indirectly via a gateway or proxy. The data sinks can include the data sources and/or other applications.

These parts are the same as for “traditional event streaming use cases”. However, for low latency use cases with zero downtime and data loss, the architecture often looks different to reach the defined goals and SLAs. A single infrastructure is usually the better choice than using a best-of-breed approach with many different frameworks or products. That’s where the Kafka ecosystem shines! The Kafka vs. MQ/ETL/ESB/API blog explores this discussion in more detail.

Low latency = soft real-time; NOT hard real-time

Make sure to understand that real-time in the IT world (that includes Kafka) is not hard real-time. Latency spikes and non-deterministic network behavior exist. The chosen software or framework does not matter. Hence, in the IT world, real-time means soft real-time. Contrarily, in the OT world and Industrial IoT, real-time means zero latency and deterministic networks. This is embedded software for sensors, robots, or cars.

For more details, read the blog post “Kafka is NOT hard-real-time“.

Kafka support for low latency processing

Apache Kafka provides very low end-to-end latency for large volumes of data. This means the amount of time it takes for a record that is produced to Kafka to be fetched by the consumer is short.

For example, detecting fraud for online banking transactions has to happen in real-time to deliver business value without adding more than 50—100 ms of overhead to each transaction to maintain a good customer experience.

Here is the technical architecture for end-to-end latency with Kafka:

Low Latency Data Processing with Apache Kafka

Latency objectives are expressed as both target latency and the importance of meeting this target. For instance, a latency objective says: “I would like to get 99th percentile end-to-end latency of 50 ms from Kafka.” The right Kafka configuration options need to be optimized to achieve this. The blog post “99th Percentile Latency at Scale with Apache Kafka” shares more details.

After exploring what low latency and real-time data processing mean in Kafka’s context, let’s now discuss the infrastructure options.

Infrastructure for Low Latency Data Processing

Low latency always requires a short distance between data sources, data processing platforms, and data sinks due to physics. Latency optimization is relatively straightforward if all your applications run in the same public cloud. Low end-to-end latency gets much more difficult as soon as some software, mobile apps, sensors, machines, etc., run elsewhere. Think about connected cars, mobile apps for mobility services like ride-hailing, location-based services in retail, machines/robots in factories, etc.

The remote data center or remote cloud region cannot provide low latency data processing! The focus of this post is software that has to provide low end-to-end latency outside a central data center or public cloud. This is where edge computing and 5G networks come into play.

Edge infrastructure for low latency data processing

As for real-time and low latency, we need to define the term first, as everyone uses it differently. When I talk about the edge in the context of Kafka, it means:

  • Edge is NOT a regular data center or cloud region, but limited compute, storage, network bandwidth.
  • Edge can be a regional cloud-native infrastructure enabled for low-latency use cases – often provided by Telco enterprises in conjunction with cloud providers.
  • Kafka clients AND the Kafka broker(s) deployed here, not just the client applications.
  • Often 100+ locations, like restaurants, coffee shops, or retail stores, or even embedded into 1000s of devices or machines.
  • Offline business continuity, i.e., the workloads continue to work even if there is no connection to the cloud.
  • Low-footprint and low-touch, i.e., Kafka can run as a normal highly available cluster or as a single broker (no cluster, no high availability); often shipped “as a preconfigured box” in OEM hardware (e.g., Hivecell).
  • Hybrid integration, i.e., most use cases require uni- or bidirectional communication with a remote Kafka cluster in a data center or the cloud.

Check out my infrastructure checklist for Apache Kafka at the edge and use cases for Kafka at the edge across industries for more details.

Mobile Edge Compute / Multi-access Edge Compute (MEC)

In addition to edge computing, a few industries (especially everyone related to the Telco sector) uses the terms Mobile Edge Compute / Multi-access Edge Compute (MEC) to describe use cases around edge computing, low latency, 5G, and data processing.

MEC is an ETSI-defined network architecture concept that enables cloud computing capabilities and an IT service environment at the edge of the cellular network and, more generally, at the edge of any network. The basic idea behind MEC is that by running applications and performing related processing tasks closer to the cellular customer, network congestion is reduced, and applications perform better.

MEC technology is designed to be implemented at the cellular base stations or other edge nodes. It enables flexible and rapid deployment of new applications and services for customers. Combining elements of information technology and telecommunications networking, MEC also allows cellular operators to open their radio access network (RAN) to authorized third parties, such as application developers and content providers.

5G and cloud-native Infrastructure are a key piece of a MEC infrastructure!

Low-latency data processing outside a cloud region requires a cloud-native infrastructure and 5G networks. Let’s explore this combination in more detail.

5G infrastructure for low latency and high throughput SLAs

On a high level from a use case perspective, it is important to understand that 5G is much more than just higher speed and lower latency:

  • Public 5G telco infrastructure: That’s what Verizon, AT&T, T-Mobile, Dish, Vodafone, Telefonica, and all the other telco providers talk about in their TV spots. The end consumer gets higher download speeds and lower latency (at least in theory). This infrastructure integrates vehicles (e.g., cars) and devices (e.g., mobile phones) to the 5G network (V2N).
  • Private 5G campus networks: That’s what many enterprises are most interested in. The enterprise can set up private 5G networks with guaranteed quality of service (QoS) using acquired 5G slices from the 5G spectrum. Enterprise work with telco providers, telco hardware vendors, and sometimes also with cloud providers to provide cloud-native infrastructure (e.g., AWS Outposts, Azure Edge Zones, Google Anthos). This infrastructure is used similarly to the public 5G but deployed, e.g., in a factory or hospital. The trade-offs are guaranteed SLAs and increased security vs. higher cost. Lufthansa Technik and Vodafone’s standalone private 5G campus network at the aircraft hangar is a great example for various use cases like maintenance via video streaming and augmented reality.
  • Direct connection between devices: That’s for interlinking the communication between two or more vehicles (V2V) or vehicles and infrastructure (V2I) via unicast or multicast. There is no need for a network hop to the cell tower due to using a 5G technique called 5G sidelink communications. This enables new use cases, especially in safety-critical environments (e.g., autonomous driving) where Bluetooth, Wi-Fi, and similar network communications do not work well for different reasons.
Cloud-native infrastructure

Cloud-native infrastructure provides capabilities to build applications in an elastic, scalable, and automated way. Software development concepts like microservices, DevOps, and containers usually play a crucial role here.

A fantastic example is Dish Network in the US. Dish builds a brand new 5G network completely on cloud-native AWS infrastructure with cloud-native 1st and 3rd party software. Thus, even the network providers – where enterprises build their applications – build the underlying infrastructure this way.

Cloud-native infrastructure is required in the public cloud (where it is the norm) and at the edge. Flexibility for agile development and deployment of applications is only possible this way. Hence, technologies such as Kubernetes and on-premise solutions from cloud providers are adopted more and more to achieve this goal.

The combination of 5G and cloud-native infrastructure enables building low latency applications for data processing everywhere.

Software for Low Latency Data Processing

5G and cloud-native infrastructure provide the foundation for building mission-critical low latency applications everywhere. Let’s now talk about the software part and with that about event streaming with Kafka.

Why event streaming with Apache Kafka for low latency?

Apache Kafka provides a complete software stack for real-time data processing, including:

  1. Messaging (real-time pub/sub)
  2. Storage (caching, backpressure handling, decoupling)
  3. Data integration (IoT data, legacy platforms, modern microservices, and databases)
  4. Stream processing (stateless/stateful correlation of data).

This is super important because simplicity and cost-efficient operations matter much more at the edge than in a public cloud infrastructure where various SaaS services can be glued together.

Hence, Kafka is uniquely positioned to run mission-critical and analytics workloads at the edge on cloud-native infrastructure via 5G networks. Bi-directional replication to “regular” data centers or public clouds for integration with other systems is also possible via the Kafka protocol.

Use Cases for Low Latency Data processing with Apache Kafka

Low latency and real-time data processing are crucial for many use cases across industries. Hence, no surprise that Kafka plays a key role in many architectures – whether the infrastructure runs at the edge or in a close data center or cloud.

Mobile Edge Compute / Multi-access Edge Compute (MEC) use cases for Kafka across industries

Let’s take a look at a few examples:

  • Telco: Infrastructure like cloud-native 5G networks, OSS applications, integration with BSS and OTT services require to integrate, orchestrate and correlate huge volumes of data in real-time.
  • Manufacturing: Predictive maintenance, quality assurance, real-time locating systems (RTLS), and other shop floor applications are only effective and valuable with stable, continuous data processing.
  • Mobility Services: Ride-hailing, car sharing, or parking services can only provide a great customer experience if the events from thousands of regional end-users are processed in real-time.
  • Smart City: Cars from various carmakers, infrastructures such as traffic lights, smart buildings, and many other things need to get real-time information from a central data hub to improve safety and new innovative customer experiences.
  • Media: Interactive live video streams, real-time interactions, a hyper-personalized experience, augmented reality (AR) and virtual reality (VR) applications for training/maintenance/customer experience, and real-time gaming can only work well with stable, high throughput, and low latency.
  • Energy: Utilities, oil rigs, solar parks, and other energy upstream/distribution/downstream infrastructures are supercritical environments and very expensive. Every second counts for safety and efficiency/cost reasons. Optimizations combine data from all machines in a plant to achieve greater efficiency – not just optimizing one unit but for the entire system.
  • Retail: Location-based services for better customer experience and cross-/upselling need notifications while customers are looking at a product or in front of the checkout.
  • Military: Border control, surveillance, and other location-based applications only work efficiently with low latency.
  • Cybersecurity: Continuous monitoring and signal processing for thread detection and practice prevention are fundamental for any security operation center (SOC) and SIEM/SOAR implementation.

For a concrete example, check out my blog “Building a Smart Factory with Apache Kafka and 5G Campus Networks“.

NOT every use case requires low latency or real-time

Real-time data in motion beats data at rest in databases or data lakes in most scenarios. However, not every use case can be or needs to be real-time. Therefore, low latency networks and communication are not required. A few examples:

  • Reporting (traditional business intelligence)
  • Batch analytics (processing high volumes of data in a bundle, for instance, Hadoop and Spark’s map-reduce, shuffling, and other data processing only make sense in batch mode)
  • Model training as part of a machine learning infrastructure (while model scoring and monitoring often require real-time predictions, the model training is batch in almost all currently available ML algorithms).

These use cases can be outsourced to a remote data center or public cloud. Low latency networking in terms of milliseconds does not matter and likely increases the infrastructure cost. For that reason, most architectures are hybrid to separate low latency from analytics workloads.

Let’s now take a concrete example after all the theory in the last sections.

Hybrid Architecture for Critical Low Latency and Analytical Batch Workloads

Many enterprises I talk to don’t have and don’t want to build their own infrastructure at the edge. Cloud providers understand this pain and started rolling out offerings to provide cloud-native infrastructure close to the customer’s sites. AWS Outposts, Azure Edge Zones, Google Anthos exist for this reason. This solves the problem of providing cloud-native infrastructure.

But what about low latency?

AWS is once again the first to build a new product category: AWS Wavelength is a service that enables you to deliver ultra-low latency applications for 5G devices. It is built on top of AWS Outposts. AWS works with Telco providers like Verizon, Vodafone, KDDI, or SK Telecom to build this offering. A win-win-win: Cloud-native + low latency + no need to build own data centers at the edge.

This is the foundation for building low latency applications at the edge for mission-critical workloads, plus bi-directional integration with the regular public cloud region for analytics workloads and integration with other cloud applications.

Let’s see how this looks like in a real example.

Use case: Energy Production and distribution

Energy production and distribution are perfect examples. They require reliability, flexibility, sustainability, efficiency, security, and safety. These are perfect ingredients for a hybrid architecture powered by cloud-native infrastructure, 5G networks, and event streaming.

The energy sector usually separates analytical capabilities (in the data center or cloud) and low-latency computing for mission-critical workloads (at the edge). Kafka became a critical component for various energy use cases.

For more details, check out the blog post “Apache Kafka for Smart Grid, Utilities and Energy Production” which also covers real-world examples from EON, Tesla, and Devon Energy.

Architecture with AWS Wavelength,  Verizon 5G, and Confluent

The concrete example uses:

  • AWS Public Cloud for analytics workloads
  • Confluent Cloud for event streaming in the cloud and integration with 1st party (e.g., AWS S3 and Amazon Redshift) and 3rd party SaaS (e.g., MongoDB Atlas, Snowflake, Salesforce CRM)
  • AWS Wavelength with Verizon 5G for low latency workloads
  • Confluent Platform with Kafka Connect and ksqlDB for low latency competing in the Wavelength 5G zone
  • Confluent Cluster Linking to glue together the Wavelength zone and the public AWS region using the native Kafka protocol for bi-directional replication in real-time

 

Energy Production and Distribution with a Hybrid Architecture using Apache Kafka and AWS Wavelength

 

The following diagram shows the same architecture from the perspective of the Wavelength zone where the low latency processing happens:

Energy Production at the Edge with Apache Kafka and AWS Wavelength

Implementation: Hybrid data processing with Kafka/Confluent, AWS Wavelength, and Verizon 5G

Diagrams are nice. But a real implementation is even better to demonstrate the value of low latency computing close to the edge, plus the integration with the edge devices and public cloud. My colleague Joseph Morais had the lead in implementing a low-latency Kafka scenario with infrastructure provided by AWS and Verizon:

AWS Wavelength Kafka Confluent Cloud Verizon MEC Edge Architecture

We implemented a use case around real-time analytics with Machine Learning. A single data pipeline collects provides end-to-end integration in real-time across locations. The data comes from edge locations. The low latency processing happens in the AWS Wavelength zone. This includes data integration, preprocessing like filtering/aggregations, and model scoring for anomaly detection.

Cluster Linking (a Kafka-native built-in replication feature) replicates the relevant data to Confluent Cloud in the local AWS region. The cloud is used for batch use cases such as model training with AWS Sagemaker.

This demo demonstrates a realistic hybrid end-to-end scenario to combine mission-critical low latency and analytics batch workloads.

Curious about the relation between Kafka and Machine Learning? I wrote various blogs. One good starter: “Machine Learning and Real-Time Analytics in Apache Kafka Applications“.

Last mile integration: Direct Kafka connection vs gateway / bridge (MQTT / HTTP)?

The last mile integration is an important aspect. How do you integrate “the last mile”? Examples include mobile apps (e.g., ride-hailing), connected vehicles (e.g., predictive maintenance), or machines (e.g., quality assurance for the production line).

This is worth a longer discussion in its own blog post, but let’s do a summary here:

Kafka was not built for bad networks. And Kafka was not built for tens of thousands of connections. Hence, it is pretty straightforward to decide. Option 1 is a direct connection with a Kafka client (using Kafka client APIs for Java, C++, Go, etc.). Option 2 is a scalable gateway or bridge (like MQTT or HTTP Proxy). When to use which one?

  • Use a direct connection via a Kafka client API if you have a stable network and only a limited number of connections (usually not higher than 1000 or so).
  • Use a gateway or bridge if you have a bad network infrastructure and/or tens of thousands of connections.

The blog series “Use Case and Architectures for Kafka and MQTT” gives you some ideas about use cases that require a bridge or gateway, for instance, connected cars and mobility services. But keep it as simple as possible. If a direct connection works for your use case, why add yet another technology with all its implications regarding complexity and cost?

Low Latency Data Processing Requires the Right Architecture

Low latency data processing is crucial for many use cases across industries. Processing data close to the edge is necessary if the applications cannot run in the cloud. Dedicated cloud-native infrastructure such as AWS Wavelength leverages 5G networks to provide the infrastructure. Event streaming with Apache Kafka provides the capabilities to implement edge computing and the integration with the cloud.

What are your experiences and plans for low latency use cases? What use case and architecture did you implement? Let’s connect on LinkedIn and discuss it! Stay informed about new blog posts by subscribing to my newsletter.

 

The post Low Latency Data Streaming with Apache Kafka and Cloud-Native 5G Infrastructure appeared first on Kai Waehner.

]]>